首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition
Affiliation:1. TECNALIA, Energy and Environment Division, San Sebastian-Donostia, Spain;2. Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands;3. Inorganic Membranes and Membrane Reactors, Sustainable Process Engineering, Department of Chemical Engineering and Chemistry, Eindhoven, University of Technology (TU/e), Eindhoven, The Netherlands
Abstract:
Pinhole-free palladium/nickel (Pd/Ni) alloy membranes deposited on a porous stainless steel (SUS) support have been fabricated. The deposition was made by vacuum electrodeposition technique which could produce the alloy film less than 1 μm thick. This technique allows for the Pd/Ni alloy by employing Pd/Ni complex reagent, and typical Pd/Ni plating had compositions of 78% Pd and 22% Ni. In order to make the surface smooth and enhance the adhesive bond between the top layer and the substrate, a nascent porous SUS disk was treated sequently with submicron nickel powder and CuCN solution. The important parameters that can affect deposition were pore size, defects, and surface roughness of substrate. The membranes were characterized by permeation experiments with hydrogen and nitrogen at temperatures ranging from 623 to 823 K and pressures from 10.3 to 51.7 cmHg. The composite membranes prepared in this technique yielded excellent separation performance for hydrogen: hydrogen permeance of 5.79×10−2 cm3/cm2 cmHg s and hydrogen/nitrogen (H2/N2) selectivity was 4700 at 823 K.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号