首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Catalytic transformation of cellulose and its derived carbohydrates into chemicals involving C–C bond cleavage
摘    要:The catalytic transformation of cellulose, the major component of abundant and renewable lignocellulosic biomass, into building-block chemicals is a key to establishing sustainable chemical processes. Cellulose is a polymer of glucose and a lot research effort has been devoted to the conversion of cellulose to six-carbon platform compounds such as glucose and glucose derivatives through C–O bond activation. There also exist considerable studies on the catalytic cleavage of C–C bonds in biomass for the production of high-value chemicals, in particular polyols and organic acids such as ethylene glycol and lactic acid. This review article highlights recent advances in the development of new catalytic systems and new strategies for the selective cleavage of C–C bonds in cellulose and its derived carbohydrates under inert, reductive and oxidative atmospheres to produce C1–C5polyols and organic acids. The key factors that influence the catalytic performance will be clarified to provide insights for the design of more efficient catalysts for the transformation of cellulose with precise cleavage of C–C bonds to high-value chemicals. The reaction mechanisms will also be discussed to understand deeply how the selective cleavage of C–C bonds can be achieved in biomass.

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号