首页 | 本学科首页   官方微博 | 高级检索  
     


Vibrational energy transport in molecular wires
Authors:V. A. Benderskii  A. S. Kotkin  I. V. Rubtsov  E. I. Kats
Affiliation:1. Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432, Russia
2. Department of Chemistry, Tulane University, LA New Orleans, 70118, USA
3. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432, Russia
Abstract:
Motivated by recent experimental observation (see, e.g., I. V. Rubtsov, Acc. Chem. Res. 42, 1385 (2009)) of vibrational energy transport in (CH2O) N and (CF2) N molecular chains (N = 4–12), in this paper we present and solve analytically a simple one dimensional model to describe theoretically these data. To mimic multiple conformations of the molecular chains, our model includes random off-diagonal couplings between neigh-boring sites. For the sake of simplicity, we assume Gaussian distribution with dispersion σ for these coupling matrix elements. Within the model we find that initially locally excited vibrational state can propagate along the chain. However, the propagation is neither ballistic nor diffusion like. The time T m for the first passage of the excitation along the chain, scales linearly with N in the agreement with the experimental data. Distribution of the excitation energies over the chain fragments (sites in the model) remains random, and the vibrational energy, transported to the chain end at t = T m is dramatically decreased when σ is larger than characteristic interlevel spacing in the chain vibrational spectrum. We do believe that the problem we have solved is not only of intellectual interest (or to rationalize mentioned above experimental data) but also of relevance to design optimal molecular wires providing fast energy transport in various chemical and biological reactions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号