首页 | 本学科首页   官方微博 | 高级检索  
     

k-means-RBF集成神经网络在工业尾气检测中的应用
引用本文:刘 萍 龚雪飞 简家文 张 帆 陈志芸. k-means-RBF集成神经网络在工业尾气检测中的应用[J]. 宁波大学学报(理工版), 2017, 0(1): 116-120
作者姓名:刘 萍 龚雪飞 简家文 张 帆 陈志芸
作者单位:(宁波大学 信息科学与工程学院, 浙江 宁波 315211)
摘    要:神经网络是工业尾气检测系统的一个重要组成部分. 为提高神经网络的预测精度和收敛速度, 建立k-means-RBF集成神经网络模型. 首先, 通过选取不同的径向基函数神经网络参数, 得到一组RBF神经网络; 然后, 利用k-means算法对生成的RBF神经网络进行聚类, 并筛选出各类中精度较高的神经网络; 最后, 通过简单平均法对筛选出的神经网络进行集成, 得到高性能的k-means-RBF集成神经网络模型. 为验证模型有效性, 搭建基于k-means-RBF集成神经网络模型的工业尾气检测系统进行验证. 结果表明, 与粒子群算法优化后的Back Propagation (PSO-BP)神经网络模型相比, k-means-RBF集成神经网络模型的平均预测精度提高78.27%, 收敛时间节省99.65%

关 键 词:工业尾气检测  径向基函数神经网络  k-means算法

k-means-RBF integrated neural network and its application in industrial exhaust emission detection
LIU Ping,GONG Xue-fei,JIAN Jia-wen,ZHANG Fan,CHEN Zhi-yun. k-means-RBF integrated neural network and its application in industrial exhaust emission detection[J]. Journal of Ningbo University(Natural Science and Engineering Edition), 2017, 0(1): 116-120
Authors:LIU Ping  GONG Xue-fei  JIAN Jia-wen  ZHANG Fan  CHEN Zhi-yun
Affiliation:( Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China )
Abstract:Neural network is very important in detection of industrial exhaust emission. In order to improve stability and prediction accuracy of neural network and reduce the training time of neural network, k-means-RBF integrated neural network model is established based on k-means algorithm. Firstly, a set of RBF neural networks are obtained by choosing different RBF network function parameters. Secondly, the neural network with higher precision is selected from each type. Finally, high performance integration RBF neural network is obtained through integrating RBF neural network using the simple average method. In order to verify the validity of the model, the developed neural network model is used on the industrial exhaust emission detection system. The results show that, compared with the Back Propagation (BP) neural network method optimized by particle swarm optimization (PSO), the average precision predicted by the proposed neural network increases by 78.27%, and the processing time is saved by 99.65%
Keywords:industrial exhaust emission detection  RBF neural network  k-means algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《宁波大学学报(理工版)》浏览原始摘要信息
点击此处可从《宁波大学学报(理工版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号