首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络方法的鸟撞飞机风挡冲击载荷反演
引用本文:白金泽, 孙秦. 基于神经网络方法的鸟撞飞机风挡冲击载荷反演[J]. 固体力学学报, 2005, 26(1): 77-82. doi: 10.3969/j.issn.0254-7805.2005.01.013
作者姓名:白金泽  孙秦
作者单位:西北工业大学航空学院,西安,710072;中国科学院力学所工程科学部,北京,100080; 西北工业大学航空学院,西安,710072
摘    要:以鸟撞实验中传感器实测信号为基础,结合有限元正问题计算方法与神经网络理论,构造小波动态延时反馈神经网络,并详细分析了该网络的结构参数、对比了网络单点应变输入法、两点应变输入法以及三点(多点)应变输入法的训练效率与反演精度.构造的神经网络可以高精度地反演出鸟撞飞机风挡过程中冲击载荷时间历程,同时具有较高的抗干扰能力,且训练过程平稳、训练效率高.根据已有的研究成果,提出了鸟撞实验应变传感器建议布置,可以在满足实验测量要求的基础上简化实验过程,提高实验效率.

关 键 词:神经网络   飞机风挡   鸟撞   冲击载荷反演
修稿时间:2003-07-18

NEURAL-NETWORK BASED BIRD STRIKE LOADINGS INVERSE TO AIRCRAFT WINDSHIELD
Bai Jinze, Sun Qin. NEURAL-NETWORK BASED BIRD STRIKE LOADINGS INVERSE TO AIRCRAFT WINDSHIELD[J]. Chinese Journal of Solid Mechanics, 2005, 26(1): 77-82. doi: 10.3969/j.issn.0254-7805.2005.01.013
Authors:Bai Jinze  Sun Qin
Affiliation:Bai Jinze 1,2 Sun Qin 1
Abstract:It is difficult to accurately capture the transient history of bird impact to aircraft windshield throngh conventional experimental methods. Based on the measured real time signals of bird strike experiment and finite element numerical solutions, this paper constructs a dynamically delayed feed wavelet (DDFW) neural network to inverse the impact loadings. The structural parameters, training efficiency and inverse precision of the network are studied in detail by comparing single point, bi point and triple point strain input methods. As a result, the DDFW neural network is effective for the impact loading inverse of bird strike windshield with high precision and strong anti jamming capability, as well as smoothly training process and high efficiency. Based on the research, this paper also suggests a strain sensors layout scheme for bird strike experiment, which can simplify experimental measures, and improve the experimental efficiency.
Keywords:DDFW network   aircraft windshield   bird strike   impact loadings inverse
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《固体力学学报》浏览原始摘要信息
点击此处可从《固体力学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号