首页 | 本学科首页   官方微博 | 高级检索  
     


Electroactive shape memory effect of radiation cross-linked SBS/LLDPE composites filled with carbon black
Authors:Yongkun Wang  Guangming Zhu  Xiaoping Cui  Tingting Liu  Zhe Liu  Kun Wang
Affiliation:1. Department of Applied Chemistry, Northwestern Polytechnical University, Xi’an, 710129, China
2. Scientific Research Institute the Engineering, University of CAPF, Xi’an, 710086, China
Abstract:The poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer and linear low-density polyethylene (LLDPE) were blended and irradiated by γ rays to prepare shape memory polymer (SMP). Different weight fractions of conductive carbon black (CB) were filled into SMP to form a novel electroactive shape memory CB/SBS/LLDPE composite. The CB reinforced radiation cross-linked SBS/LLDPE blends for the improvement of the mechanical weakness and conductivity of SBS/LLDPE bulk and for wide practical engineering uses. The electroactive shape memory CB/SBS/LLDPE composites were investigated by electrical properties, mechanical, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and electroactive shape memory effects. It is found that the tensile strength, storage modulus, and resistance against mechanical and thermal mechanical cycle loading in the developed composites increased due to the role of reinforcement of CB. The melting temperatures and volume resistance of the composites decreased with the increment of CB for excellent electrical conductivity of CB. The electroactive shape memory effects of developed CB/SBS/LLDPE composites were affected by CB weight fractions and applied voltage, while good shape recovery could be obtained in the shape recovery test. When the CB fraction is more than 5 wt%, full recovery can be observed after tens of seconds and shape recovery speed increased with CB fractions and voltage increasing. However, the shape recovery rate decreases slightly with increment of cycle times.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号