首页 | 本学科首页   官方微博 | 高级检索  
     检索      


BiVO4‐TiO2 Composite Photocatalysts for Dye Degradation Formed Using the SILAR Method
Authors:Gylen Odling  Prof Neil Robertson
Institution:School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, Scotland
Abstract:Composite photocatalyst films have been fabricated by depositing BiVO4 upon TiO2 via a sequential ionic layer adsorption reaction (SILAR) method. The photocatalytic materials were investigated by XRD, TEM, UV/Vis diffuse reflectance, inductively coupled plasma optical emission spectrometry (ICP‐OES), XPS, photoluminescence and Mott–Schottky analyses. SILAR processing was found to deposit monoclinic‐scheelite BiVO4 nanoparticles onto the surface, giving successive improvements in the films′ visible light harvesting. Electrochemical and valence band XPS studies revealed that the prepared heterojunctions have a type II band structure, with the BiVO4 conduction band and valence band lying cathodically shifted from those of TiO2. The photocatalytic activity of the films was measured by the decolourisation of the dye rhodamine 6G using λ>400 nm visible light. It was found that five SILAR cycles was optimal, with a pseudo‐first‐order rate constant of 0.004 min?1. As a reference material, the same SILAR modification has been made to an inactive wide‐band‐gap ZrO2 film, where the mismatch of conduction and valence band energies disallows charge separation. The photocatalytic activity of the BiVO4–ZrO2 system was found to be significantly reduced, highlighting the importance of charge separation across the interface. The mechanism of action of the photocatalysts has also been investigated, in particular the effect of self‐sensitisation by the model organic dye and the ability of the dye to inject electrons into the photocatalyst′s conduction band.
Keywords:charge separation  heterojunctions  photocatalysis  semiconductors  water remediation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号