首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Surface Charge‐Transfer Doping of Graphene Nanoflakes Containing Double‐Vacancy (5‐8‐5) and Stone–Wales (55‐77) Defects through Molecular Adsorption
Authors:Dr Mehdi Shakourian‐Fard  Dr Zahra Jamshidi  Dr Ganesh Kamath
Institution:1. Department of Chemical Engineering, Birjand University of Technology, Birjand, Iran;2. Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran;3. Department of Chemistry, University of Missouri-Columbia, Columbia, MO, USA
Abstract:The adsorption of six electron donor–acceptor (D/A) organic molecules on various sizes of graphene nanoflakes (GNFs) containing two common defects, double‐vacancy (5‐8‐5) and Stone–Wales (55‐77), are investigated by means of ab initio DFT M06‐2X(‐D3)/cc‐pVDZ]. Different D/A molecules adsorb on a defect graphene (DG) surface with binding energies (ΔEb) of about ?12 to ?28 kcal mol?1. The ΔEb values for adsorption of molecules on the Stone–Wales GNF surface are higher than those on the double vacancy GNF surface. Moreover, binding energies increase by about 10 % with an increase in surface size. The nature of cooperative weak interactions is analyzed based on quantum theory of atoms in molecules, noncovalent interactions plot, and natural bond order analyses, and the dominant interaction is compared for different molecules. Electron density population analysis is used to explain the n‐ and p‐type character of defect graphene nanoflakes (DGNFs) and also the change in electronic properties and reactivity parameters of DGNFs upon adsorption of different molecules and with increasing DGNF size. Results indicate that the HOMO–LUMO energy gap (Eg) of DGNFs decreases upon adsorption of molecules. However, by increasing the size of DGNFs, the Eg and chemical hardness of all complexes decrease and the electrophilicity index increases. Furthermore, the values of the chemical potential of acceptor–DGNF complexes decrease with increasing size, whereas those of donor–DGNF complexes increase.
Keywords:defects  donor–  acceptor systems  graphene  noncovalent interactions  surface analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号