Metal-catalyzed hydrosilylation of alkenes and alkynes using dimethyl(pyridyl)silane |
| |
Authors: | Itami Kenichiro Mitsudo Koichi Nishino Akira Yoshida Jun-ichi |
| |
Affiliation: | Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Kyoto 606-8501, Japan. |
| |
Abstract: | Metal-catalyzed hydrosilylation of alkenes and alkynes using dimethyl(pyridyl)silane is described. The hydrosilylation of alkenes using dimethyl(2-pyridyl)silane (2-PyMe(2)SiH) proceeded well in the presence of a catalytic amount of RhCl(PPh(3))(3) with virtually complete regioselectivity. By taking advantage of the phase tag property of the 2-PyMe(2)Si group, hydrosilylation products were isolated in greater than 95% purity by simple acid-base extraction. Strategic catalyst recovery was also demonstrated. The hydrosilylation of alkynes using 2-PyMe(2)SiH proceeded with a Pt(CH(2)=CHSiMe(2))(2)O/P(t-Bu)(3) catalyst to give alkenyldimethyl(2-pyridyl)silanes in good yield with high regioselectivity. A reactivity comparison of 2-PyMe(2)SiH with other related hydrosilanes (3-PyMe(2)SiH, 4-PyMe(2)SiH, and PhMe(2)SiH) was also performed. In the rhodium-catalyzed reaction, the reactivity order of hydrosilane was 2-PyMe(2)SiH > 3-PyMe(2)SiH, 4-PyMe(2)SiH, PhMe(2)SiH, indicating a huge rate acceleration with 2-PyMe(2)SiH. In the platinum-catalyzed reaction, the reactivity order of hydrosilane was PhMe(2)SiH, 3-PyMe(2)SiH > 4-PyMe(2)SiH > 2-PyMe(2)SiH, indicating a rate deceleration with 2-PyMe(2)SiH and 4-PyMe(2)SiH. It seems that these reactivity differences stem primarily from the governance of two different mechanisms (Chalk-Harrod and modified Chalk-Harrod mechanisms). From the observed reactivity order, coordination and electronic effects of dimethyl(pyridyl)silanes have been implicated. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|