首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Gd3(Al,Ga)5O12:Ce闪烁晶体缺陷对其发光性能的影响
引用本文:孟猛,祁强,赫崇君,丁栋舟,赵书文,施俊杰,任国浩.Gd3(Al,Ga)5O12:Ce闪烁晶体缺陷对其发光性能的影响[J].物理学报,2021(6):173-181.
作者姓名:孟猛  祁强  赫崇君  丁栋舟  赵书文  施俊杰  任国浩
作者单位:南京航空航天大学航天学院;中国科学院上海硅酸盐研究所;中国科学院海西创新研究院;上海理工大学材料科学与工程学院;山东大学晶体材料国家重点实验室
基金项目:国家自然科学基金(批准号:61675095);“中国科学院关键技术人才”基金(批准号:Y74YQ3130G);海西研究院自主部署基金(批准号:FJCXY18040202);南京航空航天大学空间光电探测与感知工业和信息化部重点实验室开放课题(批准号:NJ2020021-2);中央高校基本科研业务费(批准号:NJ2020021)资助的课题.
摘    要:新型闪烁晶体Gd3(Al,Ga)5O12:Ce(GAGG:Ce)在制备过程中易出现包裹体及反格位缺陷等问题,严重影响晶体的性能.为了抑制这些缺陷以得到大尺寸高质量的GAGG:Ce晶体,本文以Gd3(Al,Ga)5O12为基质、Ce3+为掺杂离子,采用提拉法生长得到了GAGG:Ce晶体,并对不同晶体部位的物相结构、微区成分、透光性质、发光及时间性能进行了测试和对比分析.结果表明,GAGG:Ce晶体的透过谱中存在340和440 nm两处Ce3+特征吸收带,且位于550 nm处的直线透过率为82%.晶体尾部因杂相包裹体等宏观缺陷的影响,导致其透过率下降至70%左右.微区成分分析进一步表明GAGG:Ce晶体中存在三种类型的包裹体,分别为富Gd相、富Ce相及(Al,Ga)2O3相.GAGG:Ce晶体的X射线激发发射谱中在550 nm附近存在Ce3+宽发射带,且380 nm处还存在GdAl/Ga反格位缺陷引起的发射.晶体中存在的杂相包裹体及GdAl/Ga反格位缺陷等因素导致Ce3+在GAGG基质的发光强度下降12.5%;GdAl/Ga反格位离子与近邻Ce的隧穿效应使得GAGG:Ce晶体的衰减时间由117.7 ns延长至121.9 ns,且慢分量比例由16%增加至17.2%.

关 键 词:GAGG:Ce  光产额  能量分辨率  衰减时间  反格位缺陷  包裹体

Influence of defects on luminescence properties of Gd3(Al,Ga)5O12:Ce scintillation crystals
Meng Meng,Qi Qiang,He Chong-Jun,Ding Dong-Zhou,Zhao Shu-Wen,Shi Jun-Jie,Ren Guo-Hao.Influence of defects on luminescence properties of Gd3(Al,Ga)5O12:Ce scintillation crystals[J].Acta Physica Sinica,2021(6):173-181.
Authors:Meng Meng  Qi Qiang  He Chong-Jun  Ding Dong-Zhou  Zhao Shu-Wen  Shi Jun-Jie  Ren Guo-Hao
Institution:(Key Laboratory of Space Photoelectric Detection and Perception,Ministry of Industry and Information Technology,College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 201899,China;Haixi Institute of Innovation,Chinese Academy of Sciences,Fuzhou 350002,China;School of Materials Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China)
Abstract:There are many problems during the preparation of the scintillation crystal Gd3(Al,Ga)5O12:Ce(abbreviated as GAGG:Ce),such as inclusions and antisite-defect.In order to inhibit these defects and obtain large-size and high-quality GAGG:Ce crystal,this study uses Gd3(Al,Ga)5O12as the matrix and Ce3+as the doping ions to grow the GAGG:Ce crystal by the Czochralski method.The phase structure,micro-region composition,optical and scintillation properties of GAGG:Ce are tested and compared.It is found that tipical Ce3+absorption bands are at 340 nm and 440 nm,and the linear transmittance at 550 nm is 82%.The transmittance of the crystal tail drops to about 70%due to the macroscopic defects such as inclusions.The micro-region composition analysis shows that the three types of inclusions in GAGG:Ce crystal are Gd-rich phase,Ce-rich phase,and(Al,Ga)2O3phase.The Ce3+ion emission wavelength of GAGG:Ce crystal is about 550 nm excited by the X-ray,and there is also an emission wavelength caused by the GdAl/Ga antisite-defect at 380 nm.The emission intensity of GdAl/Ga antisite-defect in the lack of(Al,Ga)component is higher than that in the excess(Al,Ga)component.The inclusions and GdAl/Ga antisite-defect make the luminous efficiency of GAGG:Ce crystal decrease by 12.5%and the corresponding light yield decreases from 58500 to 52000 photon/MeV.The tunneling effect between GdAl/Ga antisite-defect ions and neighboring Ce3+ions makes the decay time of the GAGG:Ce crystal extend from 117.7 to 121.9 ns,and the ratio of slow component increases from 16%to 17.2%.The migration of energy along the Gd3+sublattice makes the rise time of the GAGG:Ce crystal extend from 8.6 to 10.7 ns.The above conclusions further deepen the understanding of the source of inclusions and the relationship between the GdAl/Ga antisite-defect and crystal composition,and provide a theoretical basis for restraining the defects and improving the crystal properties.
Keywords:GAGG:Ce  light yield  energy resolution  decay time  antisite-defect  inclusions
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号