首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于铌酸锂双折射晶体的皮秒拍瓦激光系统光谱整形
引用本文:张腾,李大为,王韬,崔勇,张天雄,王丽,张杰,徐光.基于铌酸锂双折射晶体的皮秒拍瓦激光系统光谱整形[J].物理学报,2021(8):116-125.
作者姓名:张腾  李大为  王韬  崔勇  张天雄  王丽  张杰  徐光
作者单位:中国科学院上海光学精密机械研究所;中国工程物理研究院上海激光等离子体研究所;上海市激光技术研究所创新研发中心;中国科学院大学材料与光电研究中心
基金项目:张江国家自主创新示范区专项发展资金重大项目(批准号:ZJ2020-ZD-006)资助的课题。
摘    要:为补偿皮秒拍瓦激光系统中钕玻璃宽带放大引起的增益窄化,提出了一种基于铌酸锂双折射晶体的高能量光谱整形方法.在相同强度调制下,对比了BBO、铌酸锂和石英3种晶体,针对1053 nm激光,选用了高双折射率、大口径且不易潮解的铌酸锂作为整形晶体.理论分析了晶体厚度、倾斜角、面内旋转角对强度调制的影响,发现它们分别决定调制的带宽、中心波长及深度.并对整形过程中晶体引入的光谱相位进行了分析,发现各阶色散量随晶体厚度、倾斜角、面内旋转角变化的规律,因此可通过上述参数控制各阶色散量.在此基础上,开展了中心波长为1053 nm、带宽为10 nm、调制深度为80%的光谱整形实验和相位测量实验,实验与理论分析相一致.针对神光Ⅱ皮秒拍瓦激光系统,利用上述整形方案,国内首次实现了1700 J, 6 nm (FWHM)的高能宽带激光输出,有效补偿了增益窄化.研究结果对国内基于钕玻璃放大系统的宽频带激光装置的工程研制具有重要意义.

关 键 词:高能光谱整形  双折射晶体  光谱相位  高能拍瓦激光系统

Spectral shaping of picosecond petawatt laser system based on lithium niobate birefringent crystal
Zhang Teng,Li Da-Wei,Wang Tao,Cui Yong,Zhang Tian-Xiong,Wang Li,Zhang Jie,Xu Guang.Spectral shaping of picosecond petawatt laser system based on lithium niobate birefringent crystal[J].Acta Physica Sinica,2021(8):116-125.
Authors:Zhang Teng  Li Da-Wei  Wang Tao  Cui Yong  Zhang Tian-Xiong  Wang Li  Zhang Jie  Xu Guang
Institution:(Key Laboratory of High Power Laser and Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China;Shanghai Institute of Laser Plasma,China Academy of Engineering Physics,Shanghai 201800,China;Innovation Research and Development Center,Shanghai Institute of Laser Technology,Shanghai 201800,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
Abstract:In recent years,chirped pulse amplification(CPA)technology injects vitality into the development of ultrastrong and ultra-short lasers.However,in the CPA based gain media,the gain narrowing effect limits the higher output of ultrashort pulse in energy,power,signal-to-noise ratio.In order to compensate for the gain narrowing caused by the broadband amplification of Nb:glass in picosecond pewter laser system,a method of high-energy spectral shaping is proposed based on LiNbO3 birefringent crystal,and the spectral phase introduced by the crystal is analysed for the first time.Based on the strict Jones matrix,the transmittance function of birefringent crystal and the spectral phase introduced by the crystal are obtained.Further,three kinds of birefringent crystals are compared among each other,and the results show that the higher birefringence and the smaller thickness are required to achieve the same intensity modulation.For the laser pulse at 1053 nm,LiNbO3 is selected as the spectral shaping crystal due to its high birefringence,large diameter,and non-deliquescent.The influences of crystal thickness,tilt angle,and in-plane rotation angle on the spectral intensity modulation are simulated theoretically,and the results show the above parameters affect the modulation bandwidth,center wavelength,and modulation depth of the shaping.By analyzing the spectral phase introduced by the crystal,it is found that the dispersion of each order changes with the thickness of the crystal,the tilt angle,and the inplane rotation angle,and it is the most sensitive to the change of thickness.In addition,by controlling the dispersion of each order,the influence on the pulse signal-to-noise ratio can be weakened during spectrum shaping.On the basis of theoretical analysis,the shaping experiment with a center wavelength of 1053 nm,modulation bandwidth of 10 nm,and modulation depth of 80%is carried out.And the phase introduced by the LiNbO3 is measured.The experimental results are consistent with the theoretical analysis.For the ShenguangⅡhigh-energy petawatt laser system,by the above-mentioned shaping scheme,a high-energy broadband laser output of 1700 J and 6 nm(FWHM)is realized for the first time in China,which is 2 times that at 3.2 nm when it is not shaped.The research effectively compensates for the Nb:glass gain narrowing effect,and will provide references for the parameter design,material selection and spectral phase compensation in the birefringent spectral shaping.
Keywords:high-energy spectral shaping  birefringent crystal  spectral phase  high-energy petawatt laser system
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号