首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simultaneous evaluation of one‐electron reducing systems and radical reactions in cells by nitroxyl biradical as probe
Authors:Yoko Araki  Ichiro Koshiishi
Institution:Gunma University, Maebashi, Gunma, Japan
Abstract:In the present study, a novel probe for the simultaneous evaluation of one‐electron reducing systems (electron transport chain) and one‐electron oxidizing systems (free radical reactions) in cells by electron chemical detection was developed. Six‐membered cyclic nitroxyl radicals (2,2,6,6‐tetramethylpiperidine‐1‐oxyl; TEMPO series) are sensitive to one‐electron redox systems, generating the hydroxylamine form TEMPO(H)] via one‐electron reduction, and the secondary amine form TEMPO(N)] via one‐electron oxidation in the presence of thiols. In contrast, the sensitivities of five‐membered cyclic nitroxyl radicals (2,2,5,5‐tetramethylpyrrolidine‐1‐oxyl; PROXYL series) to the one‐electron redox systems are comparatively low. The electron chemical detector can detect 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO), TEMPO(H) and PROXYL but not TEMPO(N). Therefore, nitroxyl biradical, TEMPO‐PROXYL, as a probe for the evaluation of one‐electron redox systems was employed. TEMPO‐PROXYL was synthesized by the conjunction of 4‐amino‐TEMPO with 3‐carboxyl‐PROXYL via the conventional dicyclohexyl carbodiimide reaction. TEMPO‐PROXYL, TEMPO(H)‐PROXYL and TEMPO(N)‐PROXYL were simultaneously quantified by HPLC with Coularray detection. Calibration curves for the quantification of TEMPO‐PROXYL, TEMPO(H)‐PROXYL and TEMPO(N)‐PROXYL were linear in the range from 80 nm to 80 μm , and the lowest quantification limit of each molecule was estimated to be <80 nm . The relative standard deviations at 0.8 and 80 μm were within 10% (n = 5). Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:coularray  hplc  one‐electron redox  electron transport chain  nitroxyl radicals  caco‐2 cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号