首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis, Structure, and Characterization of New Li(+) - d(0) -Lone-Pair - Oxides: Noncentrosymmetric Polar Li(6)(Mo(2)O(5))(3)(SeO(3))(6) and Centrosymmetric Li(2)(MO(3))(TeO(3)) (M = Mo(6+) or W(6+))
Authors:Sau Doan Nguyen  P Shiv Halasyamani
Institution:Department of Chemistry, University of Houston , 136 Fleming Building, Houston, Texas 77204-5003, United States.
Abstract:New quaternary lithium - d(0) cation - lone-pair oxides, Li(6)(Mo(2)O(5))(3)(SeO(3))(6) (Pmn2(1)) and Li(2)(MO(3))(TeO(3)) (P2(1)/n) (M = Mo(6+) or W(6+)), have been synthesized and characterized. The former is noncentrosymmetric and polar, whereas the latter is centrosymmetric. Their crystal structures exhibit zigzag anionic layers composed of distorted MO(6) and asymmetric AO(3) (A = Se(4+) or Te(4+)) polyhedra. The anionic layers stack along a 2-fold screw axis and are separated by Li(+) cations. Powder SHG measurements on Li(6)(Mo(2)O(5))(3)(SeO(3))(6) using 1064 nm radiation reveal a SHG efficiency of approximately 170 × α-SiO(2). Particle size vs SHG efficiency measurements indicate Li(6)(Mo(2)O(5))(3)(SeO(3))(6) is type 1 nonphase-matchable. Converse piezoelectric measurements result in a d(33) value of ~28 pm/V and pyroelectric measurements reveal a pyroelectric coefficient of -0.43 μC/m(2)K at 50 °C for Li(6)(Mo(2)O(5))(3)(SeO(3))(6). Frequency-dependent polarization measurements confirm that Li(6)(Mo(2)O(5))(3)(SeO(3))(6) is nonferroelectric, i.e., the macroscopic polarization is not reversible, or 'switchable'. Infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements and electron localization function calculations were also done for all materials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号