首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A mathematical model for nonlinear analysis of flow pulses utilizing an integral technique
Authors:Everett Jones
Institution:(1) Aerospace Engineering Dept., University of Maryland, College Park, Maryland, USA
Abstract:An existing one-dimensional mathematical model, for the arterial tree was extended to include the effects of radial variation of axial fluid velocity by the application of an integral technique. The resulting formulation reduced to a system of characteristics equations similar, in form to the equations for the onedimensional model and the computer program was modified to accommodate the integral formulation. The need for a kinematic boundary condition on the axial component of wall velocity was demonstrated. Results were obtained for a variety of velocity profiles. It was found that the slope of the front and back of the waves as well as the wave, amplitude are sensitive to changes in the velocity profile and the axial component of wall velocity. The velocity of the waves is also effected but not significantly.
Zusammenfassung Die eindimensionale Theorie von Anliker et al. (ZAMP22, 217 (1971)) wird in dieser Arbeit dahingehend erweitert, dass der Einfluss des Geschwindigkeitsprofiles mitberücksichtigt wird. Die Navier-Stokes-Gleichungen und die Kontinuitätsgleichung werden mit Hilfe einer Integraltechnik auf ähnliche, für die Rechnung mit dem Computer geeignete Gleichungen zurückgeführt, wie sie von Anliker et al. verwendet wurden. Die charakteristischen Grössen des Geschwindigkeitsprofiles sowie die Geschwindigkeit der Gefässwand gehen als Parameter in die Theorie ein, so dass parametrische Studien durchgeführt werden können.

Nomenclature a local internal radius of the vessel - a f , A f constants in the cosine profile - b defined by equation (22) - 
$$\vec e_n ,\vec e_t$$
local normal and tangential unit vectors (see Figure 1) - f(r/a), g (z,t) defined by equation (9) - f R friction factor - 
$$\dot m_w$$
local mass flux into the vessel - p local pressure - p c capillary pressure - p o pressure at the terminal end - r, z radial and axial coordinates - S local cross sectional area - t time - 
$$\vec u_w$$
flow velocity at the wall interface - u, v, w radial, circumferential and axial components of flow velocity - u w , v w , w w radial, circumferential and axial components of flow velocity at the wall interface - 
$$\vec V_w$$
wall velocity at the interface - U w , W w radial and axial components of wall velocity at the interface - W mass average flow velocity defined by equation (13) - w o maximum flow velocity - beta 0,beta 1,beta 2,beta 3 parameters defined by equation (10) - beta 4 W w /w w - beta A ,beta B ,beta C parameters defined by equation (18) - gamma outflow parameter - lambda wave length - lambda L Lagrangian multiplier - mgr viscosity coefficient for the fluid - rgr density of the fluid - ngr kinematic viscosity - ()' nondimensional quantity of order one - ()+, () values of () associated with roots of equation (23) This analysis was initiated during the authors appointment as a NASA-ASEE Summer Faculty Fellow to the Stanford-Ames Program and completed through the facilities of the Computer Science Center at the University of Maryland.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号