首页 | 本学科首页   官方微博 | 高级检索  
     


Dose-dependent induction of apoptosis or necrosis in human cells by organotin compounds
Authors:F. Zaucke  H. Zöltzer  H. F. Krug
Affiliation:Forschungszentrum Karlsruhe, Institut für Toxikologie, P.O. Box 3640, D-76021 Karlsruhe, Germany, DE
Humanbiologie, Universit?t Kassel, P.O. Box 101380, D-34132 Kassel, Germany, DE
Abstract:
In the present study, the mode of cell death induced by highly toxic trialkylated tin compounds has been evaluated. Treatment of undifferentiated HL-60 cells with submicromolar to micromolar concentrations of tri-n-butyltin (TBT) led only to a slight decrease in cell viability measured with trypan blue exclusion. Nevertheless, cell membrane blebbing was observed by means of light microscopy and condensation of nuclear chromatin and formation of apoptotic bodies was demonstrated in Hoechst 33342 stained cells. The nuclear chromatin condensation was associated with an extensive DNA fragmentation. Visualized by agarose gel electrophoresis, genomic DNA appeared as a characteristic ladder-like pattern of DNA fragments which is the biochemical hallmark of apoptosis. The typical internucleosomal DNA digestion was concentration-dependent and began within 2 to 3 h of incubation. During the incubation period a persistent and steady elevation of intracellular free calcium concentration ([Ca2+]i) could be detected. Furthermore, the chromatin condensation and DNA fragmentation could be blocked by supplementation of the incubation medium with zinc pointing to an activation of a zinc-sensitive and calcium-dependent endogenous endonuclease. Higher concentrations of tributyltin (≥ 5 μmol/L TBT) led within hours to a cell killing with degenerative changes indicative of necrosis, demonstrated by plasma membrane disruption which was accompanied by random DNA breakdown. Furthermore, these concentrations also provoked a persistent elevation in [Ca2+]i which reached, even after 10 min, higher levels in comparison with apoptosis-inducing concentrations. The loss in membrane integrity observed at these concentrations of TBT could be due to an activation of calcium-dependent phospholipases. Here it is shown that activation of cytosolic phospholipase A2 (cPLA2) leads to liberation of arachidonic acid (AA) out of the phospholipid membrane. The results presented here demonstrate that organometals are able to induce different cell death pathways depending on the applied concentration: low concentrations led to apoptosis whereas high concentrations stimulate necrosis. We suggest that there exists a direct correlation between the intracellular free calcium concentration and the mode of cell death. Received: 1 August 1997 / Revised: 8 October 1997 / Accepted: 10 October 1997
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号