首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulation of surface structural relaxation kinetics in silica glass accelerated by water vapor
Authors:A Koike  M Tomozawa
Institution:Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
Abstract:It is known that surface structural relaxation of silica glass takes place more rapidly than bulk structural relaxation, especially in the presence of water vapor. The effect of water vapor pressure, heat-treatment temperature and initial fictive temperature on the surface structural relaxation kinetics in silica glasses was investigated by measuring the change of the surface fictive temperature determined from the IR reflection peak shift of silica structural bands. The superimposed component of bulk structural relaxation was subtracted from the measured surface structural relaxation data to isolate the true surface structural relaxation kinetics. The obtained surface structural relaxation data as a function of fictive temperature, heating temperature and water vapor pressure were simulated with a model based on the diffusion equation with time-dependent surface concentration. The simulation model was used to predict the surface structural relaxation kinetics of the optical fiber having a high fictive temperature of ~ 1650 °C at 950 °C under 355 torr of water vapor, and it was confirmed that the present model can simulate surface structural relaxation of the fiber reasonably well.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号