首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photophysical, electrochemical and anion sensing properties of Ru(II) bipyridine complexes with 2,2'-biimidazole-like ligand
Authors:Mo Hao-Jun  Niu Yan-Li  Zhang Mei  Qiao Zheng-Ping  Ye Bao-Hui
Institution:MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
Abstract:A new anion sensor Ru(bpy)(2)(DMBbimH(2))](PF(6))(2) (3) (bpy is 2, 2'-bipyridine and DMBbimH(2) is 7,7'-dimethyl-2,2'-bibenzimidazole) has been developed. Its photophysical, electrochemical and anion sensing properties are compared with two previously investigated systems, Ru(bpy)(2)(BiimH(2))](PF(6))(2) (1) and Ru(bpy)(2)(BbimH(2))](PF(6))(2) (2) (BiimH(2) is 2,2'-biimidazole and BbimH(2) is 2,2'-bibenzimidazole). The high acidity of the N-H fragments in these complexes make them easy to be deprotonated by strong basic anions such as F(-) and OAc(-), and they form N-H···X hydrogen bonds with weak basic anions like Cl(-), Br(-), I(-), NO(3)(-), and HSO(4)(-). Complex 3 displays strong hydrogen bonding with these 5 weak basic anions, with binding constants between 17,000 and 21,000, which are larger than those observed in complex 1, with binding constants between 3300 and 5700, and in complex 2, which shows no hydrogen bonding toward Cl(-), Br(-), I(-), and NO(3)(-), and forms considerable hydrogen bonds with HSO(4)(-) with a binding constant of 11,209. These hydrogen bonding behaviours give different NMR, emission and electrochemical responses. The different anion binding affinity of these complexes may be mainly attributed to their different pK(a1) values, 7.2 for 1, 5.7 for 2, and 6.2 for 3. The additional methyl groups at the 7 and 7' positions of complex 3 may also play an important role in the enhancement of anion binding strength.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号