首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Prediction of radiative heat transfer in 2D irregular geometries using the collocation spectral method based on body-fitted coordinates
Authors:Ya-Song Sun  Ben-Wen Li
Institution:Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, P.O. Box 314, Shenyang 110819, China
Abstract:Recently, an efficient numerical method, which is called the collocation spectral method (CSM), for radiative heat transfer problems, has been proposed by the present authors. In this numerical method there exists the exponential convergence rate, which can obtain a very high accuracy even using a small number of grids. In this article, the CSM based on body-fitted coordinates (BFC) is extended to simulate radiative heat transfer problems in participating medium confined in 2D complex geometries. This numerical method makes simultaneously the use of the merits of both the CSM and BFC. In this numerical approach, the radiative transfer equation (RTE) in orthogonal Cartesian coordinates should be transformed into the equation in body-fitted nonorthogonal curvilinear coordinates. In order to test the efficiency of the developed method, several 2D complex irregular enclosures with curved boundaries and containing an absorbing, emitting and scattering medium are examined. The results obtained by the CSM are assessed by comparing the predictions with those in references. These comparisons indicate that the CSM based on BFC can be recommended as a good option to solve radiative heat transfer problems in complex geometries.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号