1.Department of Pharmaceutical Chemistry, College of Pharmacy,King Saud University,Riyadh,Saudi Arabia;2.Radioactive Isotopes and Generator Department, Hot Labs Center,Egyptian Atomic Energy Authority,Cairo,Egypt;3.Department of Pharmaceutical Chemistry, Faculty of Pharmacy,Helwan University,Cairo,Egypt;4.Labeled Compounds Department, Hot Labs Center,Egyptian Atomic Energy Authority,Cairo,Egypt
Abstract:
Background
One of the most popular techniques for cancer detection is the nuclear medicine technique. The present research focuses on Platelet-12-lipoxygenase (P-12-LOX) as a promising target for treating and radio-imaging tumor tissues. Curcumin was reported to inhibit this enzyme via binding to its active site.
Results
A novel curcumin derivative was successfully synthesized and characterized with yield of 74%. It was radiolabeled with the diagnostic radioisotope technetium-99m with 84% radiochemical yield and in vitro stability up to 6 h. The biodistribution studies in tumor bearing mice confirmed the high affinity predicted by the docking results with a free binding energy value of (ΔG ?50.10 kcal/mol) and affinity (13.64 pki) showing high accumulation in solid tumor with target/non-target ratio >6.
Conclusion
The newly synthesized curcumin derivative, as a result of a computational study on platelet-12 lipoxygenase, showed its excellent free binding energy (?G ?50.10 kcal/mol) and high affinity (13.64 pKi). It could be an excellent radio-imaging agent that targeting tumor cells via targeting of P-12-LOX.
Graphical abstract This novel curcumin derivative was successfully synthesized and radiolabeled with technetium-99m and biologically evaluated in tumor bearing mice that showed high accumulation in solid tumor with target/non-target ratio >6 confirming the affinity predicted by the docking results. Predicted binding mode of a new curcumin derivative in complex with 12-LOX active site. b Curcumin itself in the 12-LOX active site biological distribution of 99mTc-curcumin derivative complex in solid tumor bearing Albino mice