首页 | 本学科首页   官方微博 | 高级检索  
     


Surface modification of semiconductor photoelectrodes for better photoelectrochemical performance
Authors:Ruby Upadhyay  Mridula Tripathi  Ashutosh Pandey
Affiliation:1. Department of Chemistry, C. M. P. College, Allahabad, India
2. Department of Chemistry, Motilal Nehru National Institute of Technology, Allahabad, India
Abstract:The present paper describes the modification and solar hydrogen production studies employing a new semiconductor-septum (SC-SEP) photoelectrode ns-TiO2/In2O3 based photoelectrochemical solar cell. The current-voltage characteristics of the above SC-SEP cell revealed that an enhancement in short-circuit current (ISC) up to three times (5 ~ 14.6 mA cm?2). The optimum hydrogen production rate was found to be 11.8 lh?1 m?2 for 5M H2SO4 and with a further increase in H2SO4 concentration, the hydrogen production rate was found to be invariant. In yet another part of our study instead of using new SC-SEP solar cell design, we used another new oxide material form such as ns-TiO2/WO3. The ns-TiO2/WO3 exhibited a high photocurrent and photo-voltage of 15.6 mA cm?2, 960 mV, respectively. The ns-TiO2/WO3 electrode exhibited a higher hydrogen gas evolution rate of 13.8 lh?1 m?2. Evidences and arguments are put forward to show that, whereas for the bare ns-TiO2 electrode, the improvement in the performance of this photo-electrode compared with its original form was due to the higher quantum yield. In the case of ns-TiO2/In2O3 and ns-TiO2/WO3 photo-electrodes, the improvement is due to the improved spectral response resulting from decrease of energy band gap.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号