首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spontaneous Generation of Modular Invariants
Authors:Harvey Cohn  John McKay
Institution:Department of Mathematics, City College (Cuny), New York, New York 10031 ; Department of Computer Science, Concordia University, Montreal, Quebec, Canada H3G 1M8
Abstract:It is possible to compute $j(\tau )$ and its modular equations with no perception of its related classical group structure except at $\infty $. We start by taking, for $p$ prime, an unknown ``$p$-Newtonian' polynomial equation $g(u,v)=0$ with arbitrary coefficients (based only on Newton's polygon requirements at $\infty $ for $u=j(\tau )$ and $v=j(p\tau )$). We then ask which choice of coefficients of $g(u,v)$ leads to some consistent Laurent series solution $u=u(q)\approx 1/q$, $v=u(q^{p})$ (where $q=\exp 2\pi i\tau )$. It is conjectured that if the same Laurent series $u(q)$ works for $p$-Newtonian polynomials of two or more primes $p$, then there is only a bounded number of choices for the Laurent series (to within an additive constant). These choices are essentially from the set of ``replicable functions,' which include more classical modular invariants, particularly $u=j(\tau )$. A demonstration for orders $p=2$ and $3$ is done by computation. More remarkably, if the same series $u(q)$ works for the $p$-Newtonian polygons of 15 special ``Fricke-Monster' values of $p$, then $(u=)j(\tau )$ is (essentially) determined uniquely. Computationally, this process stands alone, and, in a sense, modular invariants arise ``spontaneously.'

Keywords:Modular functions  modular equations  replicable functions
点击此处可从《Mathematics of Computation》浏览原始摘要信息
点击此处可从《Mathematics of Computation》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号