首页 | 本学科首页   官方微博 | 高级检索  
     


Deposition of sputtered iridium oxide—Influence of oxygen flow in the reactor on the film properties
Authors:E. Slavcheva  U. Schnakenberg
Affiliation:a Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
b Institute of Materials in Electrical Engineering I, RWTH, Aachen University, Aachen, Germany
Abstract:Thin films of iridium oxide have been deposited by reactive magnetron sputtering. The influence of oxygen partial pressure in the sputtering plasma on the composition, surface structure and morphology of the films has been studied by XRD, SEM and AFM analysis. An optimal combination of sputtering parameters yields stable microporous amorphous films with highly extended fractal surface. The electrochemical properties of these films have been investigated in view of their application as catalysts for water splitting, using the electrochemical techniques of cyclovoltammetry, electrochemical impedance spectroscopy, and steady state polarization. The SIROFs have shown an excellent electrochemical reversibility and a high catalytic activity toward the oxygen evolution reaction in 0.5 M H2SO4. A current density of 150 mA cm−2 at potential of 1.7 V (versus Ag/AgCl) has been obtained at catalyst load of only 100 μg cm−2. These results combined with the established long-term mechanical stability of the sputtered iridium oxide films (SIROFs) proved the advantages of the reactive magnetron sputtering as simple and reliable method for preparation of catalysts with precisely controlled composition, loading, and surface characteristics.
Keywords:Sputtered iridium oxide   Generic curves   Electrocatalysis   Water splitting
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号