首页 | 本学科首页   官方微博 | 高级检索  
     检索      

浸矿微生物共培养体系在氟胁迫下的基因调控机理探索
引用本文:李乾,孙静,丁德馨,王清良,马丽媛,刘学端.浸矿微生物共培养体系在氟胁迫下的基因调控机理探索[J].南华大学学报(自然科学版),2015,29(3):14-20, 38.
作者姓名:李乾  孙静  丁德馨  王清良  马丽媛  刘学端
作者单位:南华大学 铀矿冶生物技术国防重点学科实验室,湖南 衡阳 421001;南华大学 矿业工程博士后流动站,湖南 衡阳 421001,南华大学 铀矿冶生物技术国防重点学科实验室,湖南 衡阳 421001;南华大学 矿业工程博士后流动站,湖南 衡阳 421001,南华大学 铀矿冶生物技术国防重点学科实验室,湖南 衡阳 421001;南华大学 矿业工程博士后流动站,湖南 衡阳 421001,南华大学 铀矿冶生物技术国防重点学科实验室,湖南 衡阳 421001;南华大学 矿业工程博士后流动站,湖南 衡阳 421001,中南大学 资源加工与生物工程学院,湖南 长沙 410083,中南大学 资源加工与生物工程学院,湖南 长沙 410083
基金项目:湖南省自然科学基金资助项目(14JJ6024);湖南省教育厅科研基金资助项目(13C821);南华大学博士科研启动基金资助项目(2012XQD05)
摘    要:为了探明混合浸矿微生物的耐氟性能及其基因调控机理,应用功能基因芯片(FGA-Ⅱ)研究了5株浸矿细菌(Acidithiobacillus ferrooxidans ATCC 23270,Leptospirillum ferriphilum YSK,Sulfobacillus thermosulfidooxidans ST,Acidithiobacills thiooxidans A01,Acidithiobacills caldus S1)所构成的共培养体系在4.8 mmol/L氟胁迫下的基因表达谱.结果表明,该共培养体系中与氟胁迫相关的基因主要涉及到硫代谢、细胞膜、电子传递、解毒、碳固定、氮代谢等多个方面功能的代谢途径,而且各个途径在短时间(60 min)氟胁迫倾向于高效表达,而长时间(120 min)氟胁迫各个途径更倾向于低效表达.芯片图谱分析表明,氟胁迫下共培养体系中起主导调节作用的是其中的优势种群,但是劣势种群在氟胁迫时很大程度上辅助了优势种群的生长及其氧化活性的保持.

关 键 词:浸矿微生物  共培养体系  氟胁迫  基因调控
收稿时间:2014/11/28 0:00:00

Gene Regulation Mechanism of a Bioleaching MicrobialCo-culture upon Fluoride Stress
LI Qian,SUN Jing,DING De-xin,WANG Qing-liang,MA Li-yuan and LIU Xue-duan.Gene Regulation Mechanism of a Bioleaching MicrobialCo-culture upon Fluoride Stress[J].Journal of Nanhua University:Science and Technology,2015,29(3):14-20, 38.
Authors:LI Qian  SUN Jing  DING De-xin  WANG Qing-liang  MA Li-yuan and LIU Xue-duan
Institution:Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy,University of South China,Hengyang,Hunan 421001,China;Postdoctoral Research Station of Mineral Engineering,University of South China, Hengyang,Hunan 421001,China,Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy,University of South China,Hengyang,Hunan 421001,China;Postdoctoral Research Station of Mineral Engineering,University of South China, Hengyang,Hunan 421001,China,Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy,University of South China,Hengyang,Hunan 421001,China;Postdoctoral Research Station of Mineral Engineering,University of South China, Hengyang,Hunan 421001,China,Key Discipline Laboratory for National Defence of Biotechnology in Uranium Mining and Hydrometallurgy,University of South China,Hengyang,Hunan 421001,China;Postdoctoral Research Station of Mineral Engineering,University of South China, Hengyang,Hunan 421001,China,School of Minerals Processing and Bioengineering, Central South University,Changsha,Hunan 410083,China and School of Minerals Processing and Bioengineering, Central South University,Changsha,Hunan 410083,China
Abstract:In order to explore the fluoride tolerance and the gene regulation mechanisms of mixed bioleaching microorganisms,the gene expression profile of a co-culture including five typical bioleaching strains (Acidithiobacillus ferrooxidans ATCC 23270,Leptospirillum ferriphilum YSK,Sulfobacillus thermosulfidooxidans ST,Acidithiobacills thiooxidans A01,Acidithiobacills caldus S1) upon 4.8 mmol/L fluoride stress was investigated using the functional gene array.The results showed,the genes associated with fluoride stress were involved with sulfur metabolism,cell membrane,electron transport,detoxification,carbon fixation,nitrogen metabolism,and so on.Additionally,majority of genes was induced upon the short time (<60 min) fluoride stress,while repressed upon the long time (>120 min) fluoride stress.The effects of fluoride stress on different microbial population in the co-culture were different.The results revealed that the dominant species in the co-culture played the crucial role for resisting fluoride stress,while the minor species to a large extent assisted the oxidation ability preservation and growth of the dominant species.
Keywords:bioleaching microorganisms  co-culture  fluoride stress  gene regulation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《南华大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《南华大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号