首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of mercury(II) in water samples using dispersive liquid-liquid microextraction and back extraction along with capillary zone electrophoresis
Authors:Jinhua Li  Wenhui Lu  Jiping Ma  Lingxin Chen
Institution:1. Key Laboratory of Coastal Zone Environmental Processes, CAS; Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
2. Key Laboratory of Environmental Engineering of Shandong Province, Institute of Environment & Municipal Engineering, Qingdao Technological University, Qingdao, 266033, China
Abstract:We have developed a method for the determination of mercury in water samples that combines dispersive liquid-liquid microextraction (DLLME) with back-extraction (BE) and detection by capillary zone electrophoresis. DLLME is found to be a simple, cost-effective and rapid method for extraction and preconcentration. The BE procedure is based on the fact that the stability constant of the hydrophilic chelate of Hg(II) with L-cysteine is much larger than that of the respective complex with 1-(2-pyridylazo)-2-naphthol. Factors affecting complex formation and extraction efficiency (such as pH value, concentration of the chelating agent, time of ultrasonication and extraction, and type and quantity of disperser solvent) were optimized. Under the optimal conditions, the enrichment factor is 625, and the limit of detection is 0.62???g?L?1. The calibration plot is linear in the range between 1 and 1,000???g?L?1 (R 2?=?0.9991), and the relative standard deviation (RSD, for n?=?6) is 4.1%. Recoveries were determined with tap water and seawater spiked at levels of 10 and 100???g?L?1, respectively, and ranged from 86.6% to 95.1%, with corresponding RSDs of 3.95?C5.90%.
Figure
A method was developed based on the combination of dispersive liquid-liquid microextraction with back-extraction showing simplicity, cost-effectiveness, and rapidity for remarkably enhanced preconcentration, and detection by capillary zone electrophoresis occupying high resolving power, rapidity, low-cost, and environmental benignity, and applied for highly selective determination of trace mercury in water samples.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号