首页 | 本学科首页   官方微博 | 高级检索  
     

xLi[Li1/3Mn2/3]O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)的结构与电化学性能
引用本文:刘伟伟,金子信悟,方国清,孙洪丹,夏丙波,郑军伟,李德成. xLi[Li1/3Mn2/3]O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)的结构与电化学性能[J]. 高等学校化学学报, 2013, 34(10): 2395. DOI: 10.7503/cjcu20130102
作者姓名:刘伟伟  金子信悟  方国清  孙洪丹  夏丙波  郑军伟  李德成
作者单位:江苏省锂离子电池材料重点实验室, 苏州大学化学电源研究所, 苏州 215006
基金项目:国家自然科学基金(批准号:21073130)和美国富美实(FMC)公司项目资助.
摘    要:采用喷雾干燥法制备了xLi[Li1/3Mn2/3]O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)系列富锂层状固溶体正极材料, 并通过X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、电化学阻抗测试(EIS)以及充放电测试等多种手段研究了样品组分中Li2MnO3 含量变化对材料结构及电化学性能的影响.研究发现, 材料的微观结构随着Li2MnO3含量的增加而逐渐发生转变.当x≤0.2时, 样品的微观结构与其母体材料LiNi5/12Mn5/12Co2/12O2相似; 而当x≥0.4时, 样品的微观结构与Li2MnO3有很高的相似性.当x=0.3时, 材料表现出两相共存的特征.HRTEM结果显示, 随着Li2MnO3含量的增加, 样品中过渡金属原子的排列逐渐由长程有序转变为长程无序而短程有序, 并且在高Li2MnO3含量的样品中观察到了金属阳离子混排的现象.充放电测试结果表明, 当x≤0.6时, 材料的放电比容量随着x的增加而增加; 当x>0.6时, 其放电比容量则随着x的增加而下降; 当x=0.6时, 放电比容量最高, 室温及高温(50℃)下分别为260 和304 mA·h/g.EIS研究结果表明, 这种微观结构上由有序向无序的转变会导致材料电荷转移阻抗的增加, 进而影响材料的电化学性能.

关 键 词:锂离子电池  富锂正极材料  微观结构  电化学性能  
收稿时间:2013-01-28

Structure and Electrochemical Properties of xLi[Li1/3Mn2/3] O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)
LIU Wei-Wei,KANEKO Shingo,FANG Guo-Qing,SUN Hong-Dan,XIA Bing-Bo,ZHENG Jun-Wei,LI De-Cheng. Structure and Electrochemical Properties of xLi[Li1/3Mn2/3] O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)[J]. Chemical Research In Chinese Universities, 2013, 34(10): 2395. DOI: 10.7503/cjcu20130102
Authors:LIU Wei-Wei  KANEKO Shingo  FANG Guo-Qing  SUN Hong-Dan  XIA Bing-Bo  ZHENG Jun-Wei  LI De-Cheng
Affiliation:Key Laboratory of Lithium-ion Battery Materials of Jiangsu Province, Institute of Chemical Power Sources, Soochow University, Suzhou 215006, China
Abstract:Li-rich layered cathode materials xLi[Li1/3Mn2/3]O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)were prepared via spray-dry method. X-ray diffraction(XRD), high resolution transmission electron microscopy(HRTEM), X-ray photoelectron spectroscopy(XPS), electrochemical impedance spectroscopy(EIS) and charge-discharge tests were carried out to investigate the influence of the amount of Li2MnO3 component on the structure and electrochemical properties of the materials. It is found that the micro-structure changes with the increase of Li2MnO3 content in composition. In the case x≤0.2, the crystal structure of material is similar to parent material LiNi5/12Mn5/12Co2/12O2. When x≥0.4, the materials show Li2MnO3-like structure. And the two structures co-exist in sample of x=0.3. HRTEM observations reveal that the arrangement of transition mental ions in the internal structure transfer from long-range order to long-range disorder and short-range order. As the x value increases from 0.1 to 0.8, the discharge capacity of material increases gradually when x≤0.6, and decreases gradually when x>0.6. It is reasonable considering the increase of charge transfer resistence detected by EIS. As a result, when x=0.6, the material exhibts the highest discharge capacity, which is about 260 mA·h/g at room tempreature and 304 mA·h/g at high tempreature(50℃). The EIS research shows that the micro-structural transformation from order to disorder increases the charge transfer resistance of material, thus yield poor electrochemical performances.
Keywords:Lithium ion battery  Li-rich cathode material  Micro-structure  Electrochemical property  
点击此处可从《高等学校化学学报》浏览原始摘要信息
点击此处可从《高等学校化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号