首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Polaron and molecular states of a spin–orbit coupled impurity in a spinless Fermi sea
作者单位:Department of Physics, Capital Normal University, Beijing 100048, China
基金项目:Project supported by the National Natural Science Foundation of China (Grant No. 11875195) and the Foundation of Beijing Education Committees (Grant Nos. CIT&TCD201804074 and KZ201810028043).
摘    要:We investigate the polaron and molecular states of a fermionic atom with one-dimensional spin–orbit coupling(SOC)coupled to a three-dimensional spinless Fermi sea. Because of the interplay among the SOC, Raman coupling and spinselected interatomic interactions, the polaron state induced by the spin–orbit coupled impurity exhibits quite unique features. We find that the energy dispersion of the polaron generally has a double-minimum structure, which results in a finite center-of-mass(c.m.) momentum in the ground state, different from the zero-momentum polarons where SOC are introduced into the majority atoms. By further tuning the parameters such as the atomic interaction strength, a discontinuous transition between the polarons with different c.m. momenta may occur, signaled by the singular behavior of the quasiparticle residue and effective mass of the polaron. Meanwhile, the molecular state as well as the polaron-to-molecule transition is also strongly affected by the Raman coupling and the effective Zeeman field, which are introduced by the lasers generating SOC on the impurity atom. We also discuss the effects of a more general spin-dependent interaction and mass ratio. These results would be beneficial for the study of impurity physics brought by SOC.

收稿时间:2021-04-30

Polaron and molecular states of a spin-orbit coupled impurity in a spinless Fermi sea
Institution:Department of Physics, Capital Normal University, Beijing 100048, China
Abstract:We investigate the polaron and molecular states of a fermionic atom with one-dimensional spin-orbit coupling (SOC) coupled to a three-dimensional spinless Fermi sea. Because of the interplay among the SOC, Raman coupling and spin-selected interatomic interactions, the polaron state induced by the spin-orbit coupled impurity exhibits quite unique features. We find that the energy dispersion of the polaron generally has a double-minimum structure, which results in a finite center-of-mass (c.m.) momentum in the ground state, different from the zero-momentum polarons where SOC are introduced into the majority atoms. By further tuning the parameters such as the atomic interaction strength, a discontinuous transition between the polarons with different c.m. momenta may occur, signaled by the singular behavior of the quasiparticle residue and effective mass of the polaron. Meanwhile, the molecular state as well as the polaron-to-molecule transition is also strongly affected by the Raman coupling and the effective Zeeman field, which are introduced by the lasers generating SOC on the impurity atom. We also discuss the effects of a more general spin-dependent interaction and mass ratio. These results would be beneficial for the study of impurity physics brought by SOC.
Keywords:spin-orbit coupling  polaron  Fermi gas  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号