首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Institution:1.Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;2.School of Information Science and Technology, North China University of Technology, Beijing 100144, China
Abstract:Homomorphic encryption has giant advantages in the protection of privacy information. In this paper, we present a new kind of probabilistic quantum homomorphic encryption scheme for the universal quantum circuit evaluation. Firstly,the pre-shared non-maximally entangled states are utilized as auxiliary resources, which lower the requirements of the quantum channel, to correct the errors in non-Clifford gate evaluation. By using the set synthesized by Clifford gates and T gates, it is feasible to perform the arbitrary quantum computation on the encrypted data. Secondly, our scheme is different from the previous scheme described by the quantum homomorphic encryption algorithm. From the perspective of application, a two-party probabilistic quantum homomorphic encryption scheme is proposed. It is clear what the computation and operation that the client and the server need to perform respectively, as well as the permission to access the data. Finally, the security of probabilistic quantum homomorphic encryption scheme is analyzed in detail. It demonstrates that the scheme has favorable security in three aspects, including privacy data, evaluated data and encryption and decryption keys.
Keywords:quantum homomorphic encryption  universal quantum circuit  non-maximally entangled state  security  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号