Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni–Fe–Cr alloys |
| |
作者单位: | Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China |
| |
基金项目: | Project supported by the National Natural Science Foundation of China (Grant No. 11975193), City University of Hong Kong (Grant No. 9610425), Research Grants Council of Hong Kong, China (Grant No. 21200919), Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2019A1515011528), Shenzhen Basic Research Program (Grant No. JCYJ20190808181601662), and Sichuan Science and Technology Program (Grant No. 2021YJ0516). |
| |
摘 要: | Concentrated solid-solution alloys(CSAs) have demonstrated promising irradiation resistance depending on their compositions. Under irradiation, various defects can be produced. One of the most important parameters characterizing the defect production and the resulting defect number is the threshold displacement energies(E_d). In this work, we report the results of E_dvalues in a series of Ni–Fe–Cr concentrated solid solution alloys through molecular dynamics(MD)simulations. Based on several different empirical potentials, we show that the differences in the E_dvalues and its angular dependence are mainly due to the stiffness of the potential in the intermediate regime. The influences of different alloying elements and temperatures on E_dvalues in different CSAs are further evaluated by calculating the defect production probabilities. Our results suggest a limited influence of alloying elements and temperature on E_dvalues in concentrated alloys. Finally, we discuss the relationship between the primary damage and E_dvalues in different alloys. Overall, this work presents a thorough study on the E_dvalues in concentrated alloys, including the influence of empirical potentials,their angular dependence, temperature dependence, and effects on primary defect production.
|
收稿时间: | 2021-01-11 |
Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys |
| |
Affiliation: | Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China |
| |
Abstract: | Concentrated solid-solution alloys (CSAs) have demonstrated promising irradiation resistance depending on their compositions. Under irradiation, various defects can be produced. One of the most important parameters characterizing the defect production and the resulting defect number is the threshold displacement energies (Ed). In this work, we report the results of Ed values in a series of Ni-Fe-Cr concentrated solid solution alloys through molecular dynamics (MD) simulations. Based on several different empirical potentials, we show that the differences in the Ed values and its angular dependence are mainly due to the stiffness of the potential in the intermediate regime. The influences of different alloying elements and temperatures on Ed values in different CSAs are further evaluated by calculating the defect production probabilities. Our results suggest a limited influence of alloying elements and temperature on Ed values in concentrated alloys. Finally, we discuss the relationship between the primary damage and Ed values in different alloys. Overall, this work presents a thorough study on the Ed values in concentrated alloys, including the influence of empirical potentials, their angular dependence, temperature dependence, and effects on primary defect production. |
| |
Keywords: | irradiation effects molecular dynamics threshold displacement energies concentrated high-entropy alloys |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《中国物理 B》浏览原始摘要信息 |
|
点击此处可从《中国物理 B》下载免费的PDF全文 |
|