首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal and Ru-catalyzed Reactions of Styryl-Substituted Azulenes with Dimethyl Acetylenedicarboxylate
Authors:Anne Andre Sophie Briquet  Hans-Jürgen Hansen
Institution:Anne Andrée Sophie Briquet,Hans-Jürgen Hansen
Abstract:The thermal reaction of 1-(E)-styrl]azulenes with dimethyl acetylenedicarboxylate (ADM) in decalin at 190–200° does not lead to the formation fo the corresponding heptalene-1,2-dicarboxylates (Scheme 2). Main products are the corresponding azulene-1,2-dicarboxylates (see 4 and 9 ), accompanied by the benzanellated azulenes trans- 10a and trans- 11 , respectively. The latter compounds are formed by a Diels-Alder reaction of the starting azulenes and ADM, followed by an ene reaction with ADM (cf. Scheme 3). The RuH2(PPh3)4]-catalyzed reaction of 4,6,8-trimethyl-1-(E)-4-R-styryl]azulenes (R=H, MeO, Cl; Scheme 4) with ADM in MeCN at 110° yields again the azulene-1,2-dicarboxylates as main products. However, in this case, the corresponding heptalene-1,2-dicarboxylates are also formed in small amounts (3–5%; Scheme 4). The benzanellated azulenes trans- 10a and trans- 10b are also found in small amounts (2–3%) in the reaction mixture. ADM Addition products at C(3) of the azulene ring as well as at C(2) of the styryl moiety are also observed in minor amounts (1–3%). Similar results are obtained in the RuH2(PPh3)4]-catalyzed reaction of 3-(E)-styryl]guaiazulene ((E)- 8 ; Scheme 5) with ADM in MeCN. However, in this case, no heptalene formation is observed, and the amount of the ADM-addition products at C(2) of the styryl group is remarkably increased (29%). That the substitutent pattern at the seven-membered ring of (E)- 8 is not responsible for the failure of heptalene formation is demonstrated by the Ru-catalyzed reaction of 7-isopropyl-4-methyl-1-(E)-styryl]azulene ((E)- 23 ; Scheme 11) with ADM in MeCN, yielding the corresponding heptalene-1,2-dicarboxylate (E)- 26 (10%). Again, the main product is the corresponding azulene-1,2-dicarboxylate 25 (20%). Reaction of 4,6,8-trimethyl-2-(E)-styryl]azulene ((E)- 27 ; Scheme 12) and ADM yields the heptalene-dicarboxylates (E)- 30A / B , purely thermally in decalin (28%) as well as Ru-catalyzed in MeCN (40%). Whereas only small amounts of the azulene-1,2-dicarboxylate 8 (1 and 5%, respectively) are formed, the corresponding benzanellated azulene trans- 29 ist found to be the second main product (21 and 10%, respectively) under both reaction conditions. The thermal reaction yields also the benzanellated azulene 28 which is not found in the catalyzed variant of the reaction. Heptalene-1,2-dicarboxylates are also formed from 4-(E)-styryl]azulenes (e.g. (E)- 33 and (E)- 34 ; Scheme 14) and ADM at 180–190° in decalin and at 110° in MeCN by RuH2(PPh3)4] catalysis. The yields (30%) are much better in the catalyzed reaction. The formation of by-products (e.g. 39–41 ; Scheme 14) in small amounts (0.5–5%) in the Ru-catalyzed reactions allows to understand better the reactivity of zwitterions (e.g. 42 ) and their triyclic follow-up products (e.g. 43 ) built from azulenes and ADM (cf. Scheme 15).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号