首页 | 本学科首页   官方微博 | 高级检索  
     

配合物Zn(Phe)(NO3)2·H2O(s)的低温热容和标准摩尔生成焓
引用本文:邸友莹,高胜利,谭志诚. 配合物Zn(Phe)(NO3)2·H2O(s)的低温热容和标准摩尔生成焓[J]. 物理化学学报, 2007, 23(9): 1437-1441. DOI: 10.3866/PKU.WHXB20070924
作者姓名:邸友莹  高胜利  谭志诚
作者单位:College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong Province, P. R. China; Department of Chemistry, Northwest University, Xi’an 710069, P. R. China; Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China
基金项目:国家自然科学基金;聊城大学校科研和教改项目
摘    要:利用精密自动绝热热量计直接测定了配合物Zn(Phe)(NO3)2·H2O(s) (Phe:苯丙氨酸)在78-370 K温区的摩尔热容. 通过热容曲线的解析得到该配合物的起始脱水温度为, T0=(324.27±0.37) K. 将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容(Cp, m)对温度(T)的多项式方程, 并且在此基础上计算出了它的舒平热容值和各种热力学函数值. 依据Hess定律, 通过设计热化学循环, 选择体积为100 mL浓度为2 mol·L-1 的盐酸作为量热溶剂, 利用等温环境溶解-反应热量计分别测定混合物{ZnSO4·7H2O(s)+2NaNO3(s)+L-Phe(s)}和{Zn(Phe)(NO3)2·H2O(s)+Na2SO4(s)}的溶解焓为, ⊿dH0m,1 =(69.42±0.05) kJ·mol-1, ⊿dH0 m,2 =(48.14±0.04) kJ·mol-1, 进而计算出该配合物的标准摩尔生成焓为, ⊿fH0m =-(1363.10±3.52) kJ·mol-1. 另外, 利用紫外-可见(UV-Vis)光谱和折光指数(refractiveindex)的测量结果检验了所设计的热化学循环的可靠性.

关 键 词:Zn(Phe)(NO3)2·H2O(s)  绝热量热法  低温热容  溶解-反应量热法  标准摩尔生成焓  
收稿时间:2007-03-12
修稿时间:2007-03-12

Low-temperature Heat Capacities and Standard Molar Enthalpy of Formation of the Complex Zn(Phe)(NO3)2·H2O(s)
DI You-Ying,GAO Sheng-Li,TAN Zhi-Cheng. Low-temperature Heat Capacities and Standard Molar Enthalpy of Formation of the Complex Zn(Phe)(NO3)2·H2O(s)[J]. Acta Physico-Chimica Sinica, 2007, 23(9): 1437-1441. DOI: 10.3866/PKU.WHXB20070924
Authors:DI You-Ying  GAO Sheng-Li  TAN Zhi-Cheng
Affiliation:College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong Province, P. R. China; Department of Chemistry, Northwest University, Xi’an 710069, P. R. China; Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China
Abstract:Low-temperature heat capacities of the complex Zn(Phe)(NO3)2·H2O(s) (Phe: phenylalanine) have been precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 370 K. The initial dehydration temperature of the complex (T0=(324.27±0.37) K) has been obtained by means of the analysis of the heat capacity curve. The experimental values of molar heat capacities have been fitted to a polynomial equation of heat capacities (Cp, m) vs the temperature (T) with the least square method. The smoothed heat capacities and the thermodynamic functions of the complex have been calculated on the basis of the equation. In accordance with Hess law, dissolution enthalpies of the mixtures {ZnSO4·7H2O(s)+2NaNO3(s)+L-Phe(s)} and {Zn(Phe)(NO3)2·H2O(s)+Na2SO4(s)} in 2 mol·L-1 HCl were measured to be: ⊿dH0m,1=(69.42±0.05) kJ·mol-1 and ⊿dH0m,2 =(48.14±0.04) kJ·mol-1, by using an isoperibol solution-reaction calorimeter. Furthermore, the standard molar enthalpy of formation for the complex was determined as, ⊿fH0m =-(1363.10±3.52) kJ·mol-1, by designing a thermochemical cycle. In addition, the reliability of the designed thermochemical cycle has been verified by UV-Vis spectroscopy and the data of the refractive indices.
Keywords:Zn(Phe)(NO3)2·H2O(s)  Adiabatic calorimetry  Low-temperature heat capacity  Solution-reaction calorimetry  Standard molar enthalpy of formation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号