首页 | 本学科首页   官方微博 | 高级检索  
     

二阶离散隐马尔科夫模型的严格定义及等价性质
引用本文:孙颖华,杨卫国. 二阶离散隐马尔科夫模型的严格定义及等价性质[J]. 纯粹数学与应用数学, 2015, 0(4): 380-386. DOI: 10.3969/j.issn.1008-5513.2015.04.007
作者姓名:孙颖华  杨卫国
作者单位:江苏大学理学院,江苏 镇江,212013
摘    要:
隐马氏模型作为一种具有双重随机过程的统计模型,具有可靠的概率统计理论基础和强有力的数学结构,已被广泛应用于语音识别、生物序列分析、金融数据分析等领域.由于传统的一阶隐马氏模型无法表示更远状态距离间的依赖关系,就可能会忽略很多有用的统计特征,故有人提出二阶隐马氏模型的概念,但此概念并不严格.本文给出二阶离散隐马尔科夫模型的严格定义,并研究了二阶离散隐马尔科夫模型的两个等价性质.

关 键 词:二阶隐马尔科夫模型  观测链  隐藏链

The strict definition of second-order discrete hidden Markov model and its equivalent nature
Abstract:
Hidden Markov model, as a statistical model of doubly stochastic process, has a reliable theoretical foundation in probability and statistics and strong mathematical structure. It has been widely used in speech recognition, biological sequence analysis, financial data analysis, etc. As the conventional first-order hidden Markov model can not express the dependency relationship between the further distance, many useful statistical characteristic were ignored in many works. Therefore, the concept of second-order hidden Markov model was put forward, but this concept is not strict. In this paper, we give the strict definition of second-order discrete hidden Markov model and study two equivalent properties of the second-order discrete hidden Markov model.
Keywords:second-order hidden Markov model  observation chain  hidden chain
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号