首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural properties of ultra-small thorium and uranium dioxide nanoparticles embedded in a covalent organic framework
Authors:Liane M Moreau  Alexandre Herve  Mark D Straub  Dominic R Russo  Rebecca J Abergel  Selim Alayoglu  John Arnold  Augustin Braun  Gauthier J P Deblonde  Yangdongling Liu  Trevor D Lohrey  Daniel T Olive  Yusen Qiao  Julian A Rees  David K Shuh  Simon J Teat  Corwin H Booth  Stefan G Minasian
Institution:Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA.; University of California, Berkeley CA 94720 USA ; Los Alamos National Laboratory, Los Alamos NM 87545 USA ; University of Pennsylvania, Philadelphia PA 19104 USA
Abstract:We report the structural properties of ultra-small ThO2 and UO2 nanoparticles (NPs), which were synthesized without strong binding surface ligands by employing a covalent organic framework (COF-5) as an inert template. The resultant NPs were used to observe how structural properties are affected by decreasing grain size within bulk actinide oxides, which has implications for understanding the behavior of nuclear fuel materials. Through a comprehensive characterization strategy, we gain insight regarding how structure at the NP surface differs from the interior. Characterization using electron microscopy and small-angle X-ray scattering indicates that growth of the ThO2 and UO2 NPs was confined by the pores of the COF template, resulting in sub-3 nm particles. X-ray absorption fine structure spectroscopy results indicate that the NPs are best described as ThO2 and UO2 materials with unpassivated surfaces. The surface layers of these particles compensate for high surface energy by exhibiting a broader distribution of Th–O and U–O bond distances despite retaining average bond lengths that are characteristic of bulk ThO2 and UO2. The combined synthesis and physical characterization efforts provide a detailed picture of actinide oxide structure at the nanoscale, which remains highly underexplored compared to transition metal counterparts.

ThO2 and UO2 nanoparticles synthesized using a COF-5 template exhibit unpassivated surfaces and provide insight into nanoscale properties of actinides.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号