首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Combustion effects in confined explosions
Authors:AL Kuhl  H Reichenbach
Institution:aLawrence Livermore National Laboratory, WCI-AX Division, P.O. Box 808, 7000 East Avenue, Mail Stop L-030, Livermore, CA 94551, USA;bErnst Mach Institut, Eckerstraße 4, 79104 Freiburg, Germany
Abstract:Results of shock-dispersed-fuel (SDF) explosion experiments are presented. The SDF charge consisted of a spherical 0.5-g PETN booster surrounded by 1 g of fuel, either flake aluminum (Al) powder or TNT. The charge was placed at the center of a sealed chamber. Three cylindrical chambers (volumes of 6.6, 20, and 40 l with L/D = 1) and three tunnels (L/D = 3.8, 4.65, and 12.5) were used to explore the influence of chamber volume and geometry on completeness of combustion. Detonation of the SDF charge created an expanding cloud of explosion product gases and hot fuel (Al or TNT). When this fuel mixed with air, it formed a turbulent combustion cloud that consumed the fuel and liberated additional energy (31 kJ/g for Al or 15 kJ/g for TNT) over and above detonation of the booster (6 kJ/g) that created the explosion. Static pressure gauges were the main diagnostic. Pressure and impulse histories for explosions in air were much greater than those recorded for explosions in nitrogen—thereby demonstrating that combustion has a dramatic effect on the chamber pressure. This effect increases as the confinement volume decreases and the excess air ratio approaches values between 2 and 3.5.
Keywords:Shock-dispersed-fuel explosions  TNT  Al particles  Calorimeter
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号