Effects of epidemic threshold definition on disease spread statistics |
| |
Authors: | C. Lagorio,M.V. Migueles,E. Ló pez |
| |
Affiliation: | a Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, (7600) Mar del Plata, Argentina b Center for Polymer Studies, Boston University, Boston, MA 02215, USA c CABDyN Complexity Cluster and Department of Physics, University of Oxford, Park End Street Oxford, OX1 1HP, United Kingdom |
| |
Abstract: | We study the statistical properties of SIR epidemics in random networks, when an epidemic is defined as only those SIR propagations that reach or exceed a minimum size sc. Using percolation theory to calculate the average fractional size of an epidemic, we find that the strength of the spanning link percolation cluster P∞ is an upper bound to . For small values of sc, P∞ is no longer a good approximation, and the average fractional size has to be computed directly. We find that the choice of sc is generally (but not always) guided by the network structure and the value of T of the disease in question. If the goal is to always obtain P∞ as the average epidemic size, one should choose sc to be the typical size of the largest percolation cluster at the critical percolation threshold for the transmissibility. We also study Q, the probability that an SIR propagation reaches the epidemic mass sc, and find that it is well characterized by percolation theory. We apply our results to real networks (DIMES and Tracerouter) to measure the consequences of the choice sc on predictions of average outcome sizes of computer failure epidemics. |
| |
Keywords: | 64.60.ah 87.23.Ge 89.75.-k |
本文献已被 ScienceDirect 等数据库收录! |
|