首页 | 本学科首页   官方微博 | 高级检索  
     


Applying robust regression to insurance
Authors:P. Rousseeuw  B. Daniels  A. Leroy
Affiliation:Departement Wiskunde, VUB, Brussels, Belgium;Departement Wiskunde, VUB, Brussels, Belgium;Centrum voor Statistiek en Operationeel Onderzoek, VUB, Brussels, Belgium
Abstract:
A statistical procedure is called robust if it is insensitive to the occurence of gross errors in the data. The ordinary least squares regression technique does not satisfy this property, because even a single outlier can totally offset the result. Therefore, the least trimmed squares (LTS) technique is introduced, which can resist the effect of a large percentage of outliers. The latter method is illustrated on data concerning life insurance, pension funds, health insurance, and inflation.
Keywords:Least squares  Least trimmed squares  Robust regression  Outliers
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号