首页 | 本学科首页   官方微博 | 高级检索  
     

分孔径红外偏振成像仪光学系统设计
引用本文:王琪,梁静秋,梁中翥,吕金光,王维彪,秦余欣,王洪亮. 分孔径红外偏振成像仪光学系统设计[J]. 中国光学, 2018, 11(1): 92-99. DOI: 10.3788/CO.20181101.0092
作者姓名:王琪  梁静秋  梁中翥  吕金光  王维彪  秦余欣  王洪亮
作者单位:1. 中国科学院 长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033;2. 中国科学院大学, 北京 100049
基金项目:国家自然科学基金资助项目(No.61575193,No.61376122,No.61027010,No.61627819),吉林省科技发展计划资助项目(No.20150520101JH,No.20150101049JC,No.20150204072GX,No.20130206010GX),长春市科技计划资助项目(No.2013261),应用光学国家重点实验室开放基金资助项目
摘    要:
为了在复杂及伪装的红外背景中识别出小温差目标,本文提出了一种基于分孔径的偏振成像系统结构,并对分孔径偏振成像系统所采用的分孔径成像系统及中继成像系统进行了设计研究。首先,根据Stokes矢量介绍了系统的工作理论和光学结构;其次,在现有探测器的结构参数要求下,计算出了光学系统的偏心量等参数,选择硅、锗作为透镜材料。在此基础上,确定了分孔径成像系统结构和中继成像系统结构。接着使用离轴偏心多重结构设计方法对初始结构进行了优化,研究了将普通红外物镜转变为具有实入瞳的像方远心结构的方法;最后,完成了分孔径成像系统和中继成像系统的整体系统匹配。设计结果表明,整体系统的调制传递函数在探测器奈奎斯特频率为17 lp/mm处大于0.6,能够满足系统的设计要求。本文设计的结构可以对探测目标实现实时偏振成像,且具有结构紧凑的优点。

关 键 词:偏振成像  中波红外  分孔径  光学设计
收稿时间:2017-08-11

Design of decentered aperture-divided optical system of infrared polarization imager
WANG Qi,LIANG Jing-qiu,LIANG Zhong-zhu,LV Jin-guang,WANG Wei-biao,QIN Yu-xin,WANG Hong-liang. Design of decentered aperture-divided optical system of infrared polarization imager[J]. Chinese Optics, 2018, 11(1): 92-99. DOI: 10.3788/CO.20181101.0092
Authors:WANG Qi  LIANG Jing-qiu  LIANG Zhong-zhu  LV Jin-guang  WANG Wei-biao  QIN Yu-xin  WANG Hong-liang
Affiliation:1. State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
In order to identify the target with little temperature difference in complicated and disguised infrared background, a decentered aperture-divided polarization imaging system is introduced in this paper. The design of decentered aperture-divided imaging system and relay imaging system adopted in decentered aperture-divided polarization imaging system are also studied. Firstly, the working theory and optical structure of the system are introduced according to the Stokes vectors. Secondly, the parameters of the optical system such as the eccentricity are calculated under the requirements of the structural parameters of the existing detectors in the laboratory, and silicon and germanium are selected as the lens materials. According to these parameters, both the structure of aperture-divided imaging system and that of relay imaging system are determined on this basis. Then the off-axis eccentric multi-structure design method is used to optimize the initial structure. The transformation method from ordinary infrared objective to image-side telecentric structure with real entrance pupil is studied. Finally, the overall system matching of aperture-divided imaging system and relay imaging system is completed. The results show that the overall system modulation transfer function(MTF) at Nyquist frequency of the detector of 17 lp/mm is greater than 0.6, which can meet the system design requirements. The structure introduced in this paper can detect the real-time polarization of the target, and possesses the advantages of compact structure.
Keywords:polarized imaging  mid-infrared  aperture-divided  optical design
本文献已被 CNKI 等数据库收录!
点击此处可从《中国光学》浏览原始摘要信息
点击此处可从《中国光学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号