首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis
Authors:Dürr Manfried  Kentsch Jörg  Müller Torsten  Schnelle Thomas  Stelzle Martin
Institution:NMI Naturwissenschaftliches und Medizinisches Institut, Reutlingen, Germany.
Abstract:Microfluidic devices with three-dimensional (3-D) arrays of microelectrodes embedded in microchannels have been developed to study dielectrophoretic forces acting on synthetic micro- and nanoparticles. In particular, so-called deflector structures were used to separate particles according to their size and to enable accumulation of a fraction of interest into a small sample volume for further analysis. Particle velocity within the microchannels was measured by video microscopy and the hydrodynamic friction forces exerted on deflected particles were determined according to Stokes law. These results lead to an absolute measure of the dielectrophoretic forces and allowed for a quantitative test of the underlying theory. In summary, the influence of channel height, particle size, buffer composition, electric field, strength and frequency on the dielectrophoretic force and the effectiveness of dielectrophoretic deflection structures were determined. For this purpose, microfluidic devices have been developed comprising pairs of electrodes extending into fluid channels on both top and bottom side of the microfluidic channels. Electrodes were aligned under angles varying from 0 to 75 degrees with respect to the direction of flow. Devices with channel height varying between 5 and 50 microm were manufactured. Fabrication involved a dedicated bonding technology using a mask aligner and UV-curing adhesive. Particles with radius ranging from 250 nm to 12 microm were injected into the channels using aqueous buffer solutions.
Keywords:Dielectrophoresis  Microfluidic device  Nanoparticle  Particle separation  Three‐dimensional electrode array
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号