首页 | 本学科首页   官方微博 | 高级检索  
     

FeCoCrCuNi高熵合金裂纹及孔洞结构力学与微观构象演化机理的分子动力学模拟研究
引用本文:董斌,王雪梅,朱子亮. FeCoCrCuNi高熵合金裂纹及孔洞结构力学与微观构象演化机理的分子动力学模拟研究[J]. 原子与分子物理学报, 2020, 37(4): 591-595
作者姓名:董斌  王雪梅  朱子亮
作者单位:潍坊科技学院,潍坊科技学院,潍坊科技学院
基金项目:潍坊科技学院博士启动金(批准号: 2017BS06)
摘    要:
本文采用分子动力学方法研究了FeCoCrCuNi高熵合金裂纹及孔洞模型结构在不同轴向拉伸应变速率下的力学与微观结构演化机理. 结果表明:应变速率越高FeCoCrCuNi裂纹结构对应更高的过冲应变和过冲应力,其主要原因是高拉伸速率会导致高强度的BCC结构及孪晶结构的生成,而BCC结构及孪晶结构的产生进而会抑制应力的下降,通过应力-应变曲线,可知FeCoCrCuNi裂纹模型在轴向应力作用下表现为塑性形变. 对于不同尺寸的孔洞FeCoCrCuNi裂纹模型的应力模拟与结构分析,可以得出:孔洞尺寸越大, FeCoCrCuNi裂纹结构对应的过冲应变和过冲应力越小,其主要原因是大尺寸的孔洞造成孔洞之间产生裂纹的,进而会影响这个材料的屈服应变和屈服强度.

关 键 词:FeCoCrCuNi高熵合金,裂纹,孔洞,轴向拉伸
收稿时间:2019-09-07
修稿时间:2019-09-23

Study on the mechanical performance and microstructure of FeCoCrCuNi high-entropy alloy with crack and void by molecular dynamics simulations
Dong Bin,Wang Xue-Mei and Zhu Zi-Liang. Study on the mechanical performance and microstructure of FeCoCrCuNi high-entropy alloy with crack and void by molecular dynamics simulations[J]. Journal of Atomic and Molecular Physics, 2020, 37(4): 591-595
Authors:Dong Bin  Wang Xue-Mei  Zhu Zi-Liang
Abstract:
Molecular dynamics (MD) simulations have used to study the mechanical performance and microstructure of FeCoCrCuNi high-entropy alloy with crack and void. The MD simulation results have shown that higher uniaxial stretched rate corresponding higher overshoot stress and strain. This is due to the generation of BCC and twin crystal structure in FeCoCrCuNi model with high stretched rate. And the BCC and twin crystal structure will slow down the decrease of the stress. Thus, FeCoCrCuNi is plastic deformation under uniaxial stretched deformation. For voided-FeCoCrCuNi high-entropy alloy, the MD results shown that the values of the overshoot stress and strain are decreasing with the increase of the size of void. This is due to the generation of the crack between the voids for FeCoCrCuNi high-entropy alloy.
Keywords:FeCoCrCuNi high-entropy alloy   crack   void   uniaxial stretch
点击此处可从《原子与分子物理学报》浏览原始摘要信息
点击此处可从《原子与分子物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号