首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural analysis and molecular modelling of the Cu/Zn-SOD from fungal strain Humicola lutea 103
Authors:Dolashka Pavlina  Moshtanska Vesela  Dolashki Aleksander  Velkova Lyudmila  Rao Gita Subba  Angelova Maria  Betzel Christian  Voelter Wolfgang  Atanasov Boris
Institution:Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria. pda54@abv.bg
Abstract:The native form of Cu/Zn-superoxide dismutase, isolated from fungal strain Humicola lutea 103 is a homodimer that coordinates one Cu(2+) and one Zn(2+) per monomer. Cu(2+) and Zn(2+) ions play crucial roles in enzyme activity and structural stability, respectively. It was established that HLSOD shows high pH and temperature stability. Thermostability of the glycosylated enzyme Cu/Zn-SOD, isolated from fungal strain H. lutea 103, was determined by CD spectroscopy. Determination of reversibility toward thermal denaturation for HLSOD allowed several thermodynamic parameters to be calculated. In this communication we report the conditions under which reversible denaturation of HLSOD exists. The narrow range over which the system is reversible has been determined using the strongest test of two important thermodynamic independent variables (T and pH). Combining both these variables, the "phase diagram" was determined, as a result of which the real thermodynamic parameters (ΔC(p), ΔH(exp)°, and ΔG(exp)°) was established. Because very narrow pH-interval of transitions we assume they are as result of overlapping of two simple transitions. It was found that ΔH(o) is independent from pH with a value of 1.3 kcal/mol and 2.8 kcal/mol for the first and the second transition, respectively. ΔG(o) was pH-dependent in all studied pH-interval. This means that the transitions are entropically driven, these. Based on this, these processes can be described as hydrophobic rearrangement of the quaternary structure. It was also found that glycosylation does not influence the stability of the enzyme because the carbohydrate chain is exposed on the surface of the molecule.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号