首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of T2-relaxation in MAS NMR spectra of the satellite transitions for quadrupolar nuclei: a 27Al MAS and single-crystal NMR study of alum KAl(SO4)2.12H2O
Authors:Andersen Morten Daugaard  Jakobsen Hans J  Skibsted Jørgen
Affiliation:Department of Chemistry, Instrument Centre for Solid-State NMR Spectroscopy, University of Aarhus, DK-8000 Aarhus C, Denmark.
Abstract:
Asymmetries in the manifold of spinning sidebands (ssbs) from the satellite transitions have been observed in variable-temperature 27Al MAS NMR spectra of alum (KAl(SO4)2.12H2O), recorded in the temperature range from -76 to 92 degrees C. The asymmetries decrease with increasing temperature and reflect the fact that the ssbs exhibit systematically different linewidths for different spectral regions of the manifold. From spin-echo 27Al NMR experiments on a single-crystal of alum, it is demonstrated that these variations in linewidth originate from differences in transverse (T2) relaxation times for the two inner (m=1/2<-->m=3/2 and m=-1/2<-->m=-3/2) and correspondingly for the two outer (m=3/2<-->m=5/2 and m=-3/2<-->m=-5/2) satellite transitions. T2 relaxation times in the range 0.5-3.5 ms are observed for the individual satellite transitions at -50 degrees C and 7.05 T, whereas the corresponding T1 relaxation times, determined from similar saturation-recovery 27Al NMR experiments, are almost constant (T1=0.07-0.10 s) for the individual satellite transitions. The variation in T2 values for the individual 27Al satellite transitions for alum is justified by a simple theoretical approach which considers the cross-correlation of the local fluctuating fields from the quadrupolar coupling and the heteronuclear (27Al-1H) dipolar interaction on the T2 relaxation times for the individual transitions. This approach and the observed differences in T2 values indicate that a single random motional process modulates both the quadrupolar and heteronuclear dipolar interactions for 27Al in alum at low temperatures.
Keywords:Quadrupolar nuclei   Satellite transitions   Transverse relaxation   Quadrupolar coupling   Dipolar interaction
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号