首页 | 本学科首页   官方微博 | 高级检索  
     


Structural effects in electron transfer reactions: comparative interfacial electrochemical kinetics for cis- versus trans-dioxorhenium(V)(bi)pyridine oxidation
Authors:Xiao Lian Zhang   Joseph T. Hupp  Gerald D. Danzer
Abstract:The comparative interfacial oxidation kinetics of the approximate structural isomers trans-(O)2ReV(py)+4 and cis-(O)2ReV(bpy)(py)+2 (py, pyridine; bpy, 2,2′-bipyridine) have been assessed in aqueous solution via conventional cyclic voltammetry at a highly ordered pyrolytic graphite (HOPG) electrode. HOPG was employed because of its known propensity to diminish interfacial electron transfer (ET) rates (by ca. three to four orders of magnitude) and because of a probable lack of importance of kinetic work terms (diffuse double-layer corrections). Measured rates for the trans complex exceed those for the cis by about a factor of 3. Expressed as an effective activation Gibbs energy difference ΔG*, this corresponds to a cis-trans difference of ca. 3 kJ mol−1. The actual vibrational barriers to ET have determined from a combination of published X-ray structural results (trans complex) and new resonance Raman results (cis complex). The values are 0.6 kJ mol −1 for the trans oxidation and 4.4 kJ mol−1 for the cis oxidation (i.e. close to the barrier difference inferred from rate measurements). Further analysis shows that most of the barrier difference is associated with displacement of a (predominantly) Re-N(bpy) stretching mode found only in the cis system. Differences in metal-oxo displacements (cis > trans) are also implicated.
Keywords:Interfacial oxidation kinetics   Structural effects   Electron transfer reactions   Dioxorhenium(V)(bi)pyridine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号