首页 | 本学科首页   官方微博 | 高级检索  
     

深度非线性度量学习在说话人确认中的应用
引用本文:酆勇, 熊庆宇, 石为人, 曹俊华. 深度非线性度量学习在说话人确认中的应用[J]. 声学学报, 2018, 43(1): 112-120. DOI: 10.15949/j.cnki.0371-0025.2018.01.013
作者姓名:酆勇  熊庆宇  石为人  曹俊华
作者单位:1. 重庆市公安局 重庆 400010;
基金项目:重庆市公安局科研项目(R2016-12)重庆市警察学院科研项目(jy201514)资助重庆市社会民生科技创新专项项目(cstc2016shmszx1204)
摘    要:
将非线性度量学习(Nonlinear Metric Learning,NML)应用于说话人确认,提出了一种基于深度独立子空间分析(Independent Subspace Analysis,ISA)网络的说话人确认方法。区别于传统的线性度量学习方法,该方法使用深度独立子空间分析网络来学习一种从说话人原始空间到优化子空间的非线性显式映射,并在此基础上计算两条语音之间的相似性,以获得更好的说话人确认性能.所提方法在NIST SRE 2008数据集上进行了评估。评估结果表明,所提算法的等错误率指标相比传统的基于余弦距离打分的i-vector算法、线性判别分析(Linear Discriminant Analysis,LDA)算法、概率线性判别分析(Probabilistic Linear Discriminant Analysis,PLDA)算法分别下降了11.02%,6.40%和4.579%。

关 键 词:说话人确认  独立子空间分析  非线性度量  深度学习
收稿时间:2016-06-22
修稿时间:2017-01-20

Deep nonlinear metric learning for speaker verification
FENG Yong, XIONG Qingyu, SHI Weiren, CAO Junhua. Deep nonlinear metric learning for speaker verification[J]. ACTA ACUSTICA, 2018, 43(1): 112-120. DOI: 10.15949/j.cnki.0371-0025.2018.01.013
Authors:FENG Yong  XIONG Qingyu  SHI Weiren  CAO Junhua
Affiliation:1. Chongqing Public Security Bureau Chongqing 400010;2. School of Automation, Chongqing University Chongqing 400044
Abstract:
By applying Nonlinear Metric Learning to speaker recognition, a speaker verification algorithm based on deep independent subspace analysis network is proposed. Different from the traditional linear metric learning methods,the proposed method learns an explicit mapping from the original space to an optimal subspace by means of deep independent subspace analysis network. On the basis of this, the similarity between two i-vectors can be calculated in the optimal subspace in order to obtain a better speaker verification performance. The proposed method is evaluated on the NIST SRE 2008 dataset. Comparing with the traditional i-vector model with cosine distance metric, LDA and PLDA, the proposed method decreases the EER by 11.02%, 6.40% and 4.57%, respectively. 
Keywords:Speaker verification  independent subspace analysis  nonlinear metric  deep learning
本文献已被 CNKI 等数据库收录!
点击此处可从《声学学报》浏览原始摘要信息
点击此处可从《声学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号