首页 | 本学科首页   官方微博 | 高级检索  
     


Reliability and Performance of UEGO, a Clustering-based Global Optimizer
Authors:Pilar M. Ortigosa  I. García  Márk Jelasity
Affiliation:(1) Computer Architecture & Electronics Department, University of Almería, Cta. Sacramento SN, 04120 Almería, Spain;(2) Research Group on Artificial Intelligence MTA-JATE, Szeged, Hungary
Abstract:
UEGO is a general clustering technique capable of accelerating and/or parallelizing existing search methods. UEGO is an abstraction of GAS, a genetic algorithm (GA) with subpopulation support, so the niching (i.e. clustering) technique of GAS can be applied along with any kind of optimizers, not only genetic algorithm. The aim of this paper is to analyze the behavior of the algorithm as a function of different parameter settings and types of functions and to examine its reliability with the help of Csendes' method. Comparisons to other methods are also presented.
Keywords:Global optimization  Stochastic optimization  Evolutionary algorithms
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号