首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical study on supersonic mixing and combustion with hydrogen injection upstream of a cavity flameholder
Authors:Hongbo Wang  Zhenguo Wang  Mingbo Sun  Ning Qin
Institution:1. Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha, 410073, China
2. Department of Mechanical Engineering, University of Sheffield, Sheffield, S1 3JD, UK
Abstract:Characteristics of supersonic mixing and combustion with hydrogen injection upstream of a cavity flameholder are investigated numerically using hybrid RANS/LES (Reynolds-Averaged Navier–Stokes/Large-Eddy Simulation) method. Two types of inflow boundary layer are considered. One is a laminar-like boundary layer with inflow thickness of $\delta_{\inf } = 0.0$ and the other is a turbulent boundary layer with inflow thickness of $\delta_{\inf } = 2.5\,{\text{mm}}$ . The hybrid RANS/LES method acts as a DES (Detached Eddy Simulation) model for the laminar-like inflow condition and a wall-modeled LES for the turbulent inflow condition where the recycling/rescaling method is adopted. Although the turbulent inflow seems to have just minor influences on the supersonic cavity flow without fuel injection, its effects on the mixing and combustion processes are great. It is found that the unsteady turbulent structures in upstream incoming boundary layer interact with the injection jet, resulting in fluctuations of the upstream recirculation region and bow shock, and induce quick dispersion of the hydrogen fuel jet, which enhances the mixing as well as subsequent combustion.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号