首页 | 本学科首页   官方微博 | 高级检索  
     


Effective interactions in molecular dynamics simulations of lysozyme solutions
Authors:Giuseppe Pellicane  Lev Sarkisov
Affiliation:1. Nanomaterials Research Group, Computational Nanoscience & Technology Laboratory (CNTL), ABV-Indian Institute of Information Technology and Management (ABV-IIITM), 474015, Gwalior, India
Abstract:On the basis of ab-initio calculations, we predict the effect of conformation and molecule-electrode distance on transport properties of asymmetric molecular junctions for different electrode materials M (M = Au, Ag, Cu, and Pt). The asymmetry in these junctions is created by connecting one end of the biphenyl molecule to conjugated double thiol (model A) and single thiol (model B) groups, while the other end to Cu atom. A variety of phenomena viz. rectification, negative differential resistance (NDR), switching has been observed that can be controlled by tailoring the interface state properties through molecular conformation and molecule-electrode distance for various M. These properties are further analyzed by calculating transmission spectra, molecular orbitals, and orbital energy. It is found that Cu electrode shows significantly enhanced rectifying performance with change in torsion angles, as well as with increase in molecule-electrode distances than Au and Ag electrodes. Moreover, Pt electrode manifests distinctive multifunctional behavior combining switch, diode, and NDR. Thus, the Pt electrode is suggested to be a good potential candidate for a novel multifunctional electronic device. Our findings are compared with available experimental and theoretical results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号