首页 | 本学科首页   官方微博 | 高级检索  
     检索      


NIR‐FT Raman,FT‐IR and surface‐enhanced Raman scattering spectra,with theoretical simulations on chloramphenicol
Authors:D Sajan  G D Sockalingum  M Manfait  I Hubert Joe  V S Jayakumar
Abstract:Chloramphenicol (CLM), originally derived from the bacterium Streptomyces venezuelae, is an inhibitor of bacterial ribosomal peptidyl transferase activity. The near infrared Fourier transform (NIR‐FT) Raman, surface‐enhanced Raman spectroscopy (SERS) and Fourier transform infrared (FT‐IR) spectral analyses of CLM, a potential antibacterial drug for the treatment of typhoid fever, were carried out along with density functional computations. The vibrational spectral analysis reveals that the CH2 asymmetric and symmetric stretching modes are shifted to higher wavenumbers than the computed values, owing to the electronic effects resulting from induction of methylene group with the adjacent electronegative atom. The lowering of CO stretching wavenumber is due to the presence of the strong electronegative atom, nitrogen, attached to the carbonyl carbon, causing large degree of molecular π‐electron delocalization and redistribution of electrons, which weakens the CO bond. The absence of a C H stretching vibration and the observed C H out‐of‐plane bending modes suggest that the CLM molecule may be adsorbed in a flat orientation with respect to the silver surface. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:chloramphenicol  intramolecular charge transfer  vibrational spectrum  adsorption behavior  SERS  silver nanoparticles  DFT
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号