首页 | 本学科首页   官方微博 | 高级检索  
     检索      


QSAR modeling and design of cationic antimicrobial peptides based on structural properties of amino acids
Authors:Wang Yuanqiang  Ding Yuan  Wen Haixia  Lin Yong  Hu Yong  Zhang Ya  Xia Qingyou  Lin Zhihua
Institution:Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, P.R. China.
Abstract:Drug resistance to existing antibiotics poses alarming threats to global public health, which inspires heightened interests in searching for new antibiotics, including antimicrobial peptides (AMPs). Accurate prediction of antibacterial activities of AMPs may expedite novel AMP design and reduce the costs and efforts involved in laboratory screening. In the present study, a novel quantitative prediction method of AMP was established by quantitative structure-activity relationship (QSAR) modeling based on the physicochemical properties of amino acids. The indices of these physicochemical properties were used to define AMP. The structural variables were optimized by stepwise regression (STR). Three series of AMPs from the QSAR model were constructed by multiple linear regressions (MLR). These QSAR models showed good performance in reliability and predictability. The normalized regression coefficients of the QSAR model and the contribution of amino acids at each position of AMP may determine the suitableness of a particular residue at any given position. QSAR models constructed by STR-MLR should prove to be useful tools in peptide design with respect to the calculation, explanation, good and reliable performance, and definition of physiochemical properties.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号