首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and Comparative Investigation of Silicon Transition Metal Silicide Composite Anodes for Lithium Ion Batteries
Authors:Mirco Ruttert  Vassilios Siozios  Martin Winter  Tobias Placke
Abstract:A significant increase in energy density of lithium ion batteries (LIBs) can be achieved by using high‐capacity, silicon (Si)‐based negative electrode materials. Several challenges arise from the enormous volumetric changes of Si during lithiation/delithiation, such as disintegration/pulverization of the active material and the electrode as well as ongoing electrolyte decomposition, leading to rapid capacity fading. Here, we synthesize and comparatively investigate three different porous transition metal‐Si‐carbon composite materials that are composed of an active Si phase and the corresponding inactive metal‐silicide phases. In this material design, the inactive phases, as well as the pores serve as a buffer to attenuate the previously mentioned detrimental effects. The synthesized materials are studied with respect to their structural and surface properties and are characterized electrochemically regarding their rate performance, and long‐term charge/discharge cycling stability. Thereby, the composite materials show a promising rate capability and a high specific capacity. Their low initial Coulombic efficiency, due to the porous structure, can be partially compensated by pre‐lithiation. This is demonstrated by the application of the synthesized materials in a LIB full‐cell set‐up vs. NMC‐111 cathodes, where the amount of lithium is confined due to anode/cathode capacity balancing.
Keywords:Lithium ion batteries  Lithium  Silicon anodes  Pre‐lithiation  LIB full cells  Active/inactive composite
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号