首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of hydrogen and methane adsorption/separation on silicon nanotubes: a hierarchical multiscale method from quantum mechanics to molecular simulation
Authors:Sahra Balilehvand  Seyed Majid Hashemianzadeh  SeyedehSaleheh Razavi  Hedayat Karimi
Affiliation:1. Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran, Iran
Abstract:A combination of ab initio quantum mechanical (QM) calculations and canonical Monte Carlo (CMC) simulations are employed to investigate possible usage of single-walled silicon nanotubes (SWSiNTs) as a novel media for hydrogen and methane adsorption as well as their separation from each other. By fitting the force field, a Morse potential model is selected as an efficient potential to describe the binding energies between both hydrogen-SiNTs and methane-SiNTs obtained from ab initio calculations. Then CMC simulations are performed to evaluate the adsorption and separation behaviors of H2 and CH4 on the three different sizes of SiNTs including (5, 5), (7, 7), and (9, 9) SiNTs at ambient temperatures and pressures from 1 up to 10 MPa. As a comparison, the adsorption and separation of H2 and CH4 on the (8, 8) CNTs which are isodiameter with (5, 5) SiNTs are also simulated. Results are indicative of remarkable enhancement of H2 and CH4 adsorption capacity on the SiNTs compared to the CNTs, which arise from stronger van der Waals (VDW) attractions. In the case of methane adsorption on SiNTs, the stored volumetric energy exceeds the goal of the US Freedom CAR Partnership by 2010, which can not be achieved by methane compression at such low pressures. Moreover, simulation results indicate that SiNTs preferentially adsorb methane relative to hydrogen in their equimolar mixture, which results in efficient separation of these gases from each other at 293 K.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号