首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Asymptotic theory of the Boltzmann system,for a steady flow of a slightly rarefied gas with a finite Mach number: General theory
Institution:1. Department of Mathematics, Visvesvaraya National Institute of Technology, Nagpur 440010, India;2. Institute of Physics, Otto Von Guericke University, Magdeburg D-39016, Germany
Abstract:A steady rarefied gas flow with Mach number of the order of unity around a body or bodies is considered. The general behaviour of the gas for small Knudsen numbers is studied by asymptotic analysis of the boundary-value problem of the Boltzmann equation for a general domain. The effect of gas rarefaction (or Knudsen number) is expressed as a power series of the square root of the Knudsen number of the system. A series of fluid-dynamic type equations and their associated boundary conditions that determine the component functions of the expansion of the density, flow velocity, and temperature of the gas is obtained by the analysis. The equations up to the order of the square root of the Knudsen number do not contain non-Navier–Stokes stress and heat flow, which differs from the claim by Darrozes (in Rarefied Gas Dynamics, Academic Press, New York, 1969). The contributions up to this order, except in the Knudsen layer, are included in the system of the Navier–Stokes equations and the slip boundary conditions consisting of tangential velocity slip due to the shear of flow and temperature jump due to the temperature gradient normal to the boundary.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号